73 research outputs found

    Assessing karyotype precision by microarray-based comparative genomic hybridization in the myelodysplastic/myeloproliferative syndromes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Recent genome-wide microarray-based research investigations have revealed a high frequency of submicroscopic copy number alterations (CNAs) in the myelodysplastic syndromes (MDS), suggesting microarray-based comparative genomic hybridization (aCGH) has the potential to detect new clinically relevant genomic markers in a diagnostic laboratory.</p> <p>Results</p> <p>We performed an exploratory study on 30 cases of MDS, myeloproliferative neoplasia (MPN) or evolving acute myeloid leukemia (AML) (% bone marrow blasts ≤ 30%, range 0-30%, median, 8%) by aCGH, using a genome-wide bacterial artificial chromosome (BAC) microarray. The sample data were compared to corresponding cytogenetics, fluorescence <it>in situ </it>hybridization (FISH), and clinical-pathological findings. Previously unidentified imbalances, in particular those considered submicroscopic aberrations (< 10 Mb), were confirmed by FISH analysis. CNAs identified by aCGH were concordant with the cytogenetic/FISH results in 25/30 (83%) of the samples tested. aCGH revealed new CNAs in 14/30 (47%) patients, including 28 submicroscopic or hidden aberrations verified by FISH studies. Cryptic 344-kb <it>RUNX1 </it>deletions were found in three patients at time of AML transformation. Other hidden CNAs involved 3q26.2/EVI1, 5q22/APC, 5q32/TCERG1,12p13.1/EMP1, 12q21.3/KITLG, and 17q11.2/NF1. Gains of CCND2/12p13.32 were detected in two patients. aCGH failed to detect a balanced translocation (n = 1) and low-level clonality (n = 4) in five karyotypically aberrant samples, revealing clinically important assay limitations.</p> <p>Conclusions</p> <p>The detection of previously known and unknown genomic alterations suggests that aCGH has considerable promise for identification of both recurring microscopic and submicroscopic genomic imbalances that contribute to myeloid disease pathogenesis and progression. These findings suggest that development of higher-resolution microarray platforms could improve karyotyping in clinical practice.</p

    Assessing copy number aberrations and copy neutral loss of heterozygosity across the genome as best practice: An evidence based review of clinical utility from the cancer genomics consortium (CGC) working group for myelodysplastic syndrome, myelodysplastic/myeloproliferative and myeloproliferative neoplasms

    Get PDF
    Multiple studies have demonstrated the utility of chromosomal microarray (CMA) testing to identify clinically significant copy number alterations (CNAs) and copy-neutral loss-of-heterozygosity (CN-LOH) in myeloid malignancies. However, guidelines for integrating CMA as a standard practice for diagnostic evaluation, assessment of prognosis and predicting treatment response are still lacking. CMA has not been recommended for clinical work-up of myeloid malignancies by the WHO 2016 or the NCCN 2017 guidelines but is a suggested test by the European LeukaemiaNet 2013 for the diagnosis of primary myelodysplastic syndrome (MDS). The Cancer Genomics Consortium (CGC) Working Group for Myeloid Neoplasms systematically reviewed peer-reviewed literature to determine the power of CMA in (1) improving diagnostic yield, (2) refining risk stratification, and (3) providing additional genomic information to guide therapy. In this manuscript, we summarize the evidence base for the clinical utility of array testing in the workup of MDS, myelodysplastic/myeloproliferative neoplasms (MDS/MPN) and myeloproliferative neoplasms (MPN). This review provides a list of recurrent CNAs and CN-LOH noted in this disease spectrum and describes the clinical significance of the aberrations and how they complement gene mutation findings by sequencing. Furthermore, for new or suspected diagnosis of MDS or MPN, we present suggestions for integrating genomic testing methods (CMA and mutation testing by next generation sequencing) into the current standard-of-care clinical laboratory testing (karyotype, FISH, morphology, and flow)

    Assessing copy number abnormalities and copy-neutral loss-of-heterozygosity across the genome as best practice in diagnostic evaluation of acute myeloid leukemia: An evidence-based review from the cancer genomics consortium (CGC) myeloid neoplasms working group

    Get PDF
    Structural genomic abnormalities, including balanced chromosomal rearrangements, copy number gains and losses and copy-neutral loss-of-heterozygosity (CN-LOH) represent an important category of diagnostic, prognostic and therapeutic markers in acute myeloid leukemia (AML). Genome-wide evaluation for copy number abnormalities (CNAs) is at present performed by karyotype analysis which has low resolution and is unobtainable in a subset of cases. Furthermore, examination for possible CN-LOH in leukemia cells is at present not routinely performed in the clinical setting. Chromosomal microarray (CMA) analysis is a widely available assay for CNAs and CN-LOH in diagnostic laboratories, but there are currently no guidelines how to best incorporate this technology into clinical testing algorithms for neoplastic diseases including AML. The Cancer Genomics Consortium Working Group for Myeloid Neoplasms performed an extensive review of peer-reviewed publications focused on CMA analysis in AML. Here we summarize evidence regarding clinical utility of CMA analysis in AML extracted from published data, and provide recommendations for optimal utilization of CMA testing in the diagnostic workup. In addition, we provide a list of CNAs and CN-LOH regions which have documented clinical significance in diagnosis, prognosis and treatment decisions in AML

    Evaluation of chronic lymphocytic leukemia by oligonucleotide-based microarray analysis uncovers novel aberrations not detected by FISH or cytogenetic analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cytogenetic evaluation is a key component of the diagnosis and prognosis of chronic lymphocytic leukemia (CLL). We performed oligonucleotide-based comparative genomic hybridization microarray analysis on 34 samples with CLL and known abnormal karyotypes previously determined by cytogenetics and/or fluorescence <it>in situ </it>hybridization (FISH).</p> <p>Results</p> <p>Using a custom designed microarray that targets >1800 genes involved in hematologic disease and other malignancies, we identified additional cryptic aberrations and novel findings in 59% of cases. These included gains and losses of genes associated with cell cycle regulation, apoptosis and susceptibility loci on 3p21.31, 5q35.2q35.3, 10q23.31q23.33, 11q22.3, and 22q11.23.</p> <p>Conclusions</p> <p>Our results show that microarray analysis will detect known aberrations, including microscopic and cryptic alterations. In addition, novel genomic changes will be uncovered that may become important prognostic predictors or treatment targets for CLL in the future.</p

    MYC-containing double minutes in hematologic malignancies: evidence in favor of the episome model and exclusion of MYC as the target gene

    Get PDF
    Double minutes (dmin)—circular, extra-chromosomal amplifications of specific acentric DNA fragments—are relatively frequent in malignant disorders, particularly in solid tumors. In acute myeloid leukemia (AML) and myelodysplastic syndromes (MDS), dmin are observed in ∼1% of the cases. Most of them consist of an amplified segment from chromosome band 8q24, always including the MYC gene. Besides this information, little is known about their internal structure. We have characterized in detail the genomic organization of 32 AML and two MDS cases with MYC-containing dmin. The minimally amplified region was shown to be 4.26 Mb in size, harboring five known genes, with the proximal and the distal amplicon breakpoints clustering in two regions of ∼500 and 600 kb, respectively. Interestingly, in 23 (68%) of the studied cases, the amplified region was deleted in one of the chromosome 8 homologs at 8q24, suggesting excision of a DNA segment from the original chromosomal location according to the ‘episome model'. In one case, sequencing of both the dmin and del(8q) junctions was achieved and provided definitive evidence in favor of the episome model for the formation of dmin. Expression status of the TRIB1 and MYC genes, encompassed by the minimally amplified region, was assessed by northern blot analysis. The TRIB1 gene was found over-expressed in only a subset of the AML/MDS cases, whereas MYC, contrary to expectations, was always silent. The present study, therefore, strongly suggests that MYC is not the target gene of the 8q24 amplification

    Time-dependent changes in mortality and transformation risk in MDS

    Get PDF
    In myelodysplastic syndromes (MDSs), the evolution of risk for disease progression or death has not been systematically investigated despite being crucial for correct interpretation of prognostic risk scores. In a multicenter retrospective study, we described changes in risk over time, the consequences for basal prognostic scores, and their potential clinical implications. Major MDS prognostic risk scoring systems and their constituent individual predictors were analyzed in 7212 primary untreated MDS patients from the International Working Group for Prognosis in MDS database. Changes in risk of mortality and of leukemic transformation over time from diagnosis were described. Hazards regarding mortality and acute myeloid leukemia transformation diminished over time from diagnosis in higher-risk MDS patients, whereas they remained stable in lower-risk patients. After approximately 3.5 years, hazards in the separate risk groups became similar and were essentially equivalent after 5 years. This fact led to loss of prognostic power of different scoring systems considered, which was more pronounced for survival. Inclusion of age resulted in increased initial prognostic power for survival and less attenuation in hazards. If needed for practicability in clinical management, the differing development of risks suggested a reasonable division into lower- and higher-risk MDS based on the IPSS-R at a cutoff of 3.5 points. Our data regarding time-dependent performance of prognostic scores reflect the disparate change of risks in MDS subpopulations. Lower-risk patients at diagnosis remain lower risk whereas initially high-risk patients demonstrate decreasing risk over time. This change of risk should be considered in clinical decision making

    Differing clinical features between Japanese and Caucasian patients with myelodysplastic syndromes:Analysis from the International Working Group for Prognosis of MDS

    Get PDF
    Clinical features of myelodysplastic syndromes (MDS) could be influenced by many factors, such as disease intrinsic factors (e.g., morphologic, cytogenetic, molecular), extrinsic factors (e.g, management, environment), and ethnicity. Several previous studies have suggested such differences between Asian and European/USA countries. In this study, to elucidate potential differences in primary untreated MDS between Japanese (JPN) and Caucasians (CAUC), we analyzed the data from a large international database collected by the International Working Group for Prognosis of MDS (300 and 5838 patients, respectively). JPN MDS were significantly younger with more severe cytopenias, and cytogenetic differences: less del(5q) and more +1/+1q, -1/del(1p), der(1;7), -9/del(9q), del(16q), and del(20q). Although differences in time to acute myeloid leukemia transformation did not occur, a significantly better survival in JPN was demonstrated, even after the adjustment for age and FAB subtypes, especially in lower, but not in higher prognostic risk categories. Certain clinical factors (cytopenias, blast percentage, cytogenetic risk) had different impact on survival and time to transformation to leukemia between the two groups. Although possible confounding events (e.g., environment, diet, and access to care) could not be excluded, our results indicated the existence of clinically relevant ethnic differences regarding survival in MDS between JPN and CAUC patients. The good performance of the IPSS-R in both CAUC and JP patients underlines that its common risk model is adequate for CAUC and JP

    Measurement of the bbb\overline{b} dijet cross section in pp collisions at s=7\sqrt{s} = 7 TeV with the ATLAS detector

    Get PDF

    Charged-particle distributions at low transverse momentum in s=13\sqrt{s} = 13 TeV pppp interactions measured with the ATLAS detector at the LHC

    Get PDF
    corecore