46 research outputs found

    Gender Differences in Frontotemporal Lobar Degeneration (FTLD) Support an Estrogenic Model of Delayed Onset

    Get PDF
    Gender differences in frontotemporal lobar degeneration (FTLD) have been reported in the literature but not well characterized or explored. In the present work, we propose that steroid hormone estrogens delay the onset of FTLD in pre-menopausal women compared to age equivalent men, and may provide neuroprotection in the early post-menopausal period. We present a model wherein estrogens serve a regulatory role in attenuating the microglia conversion from the benign to active form in response to cell stress that might otherwise trigger an inflammatory response. Via microglia stabilization, estrogens preserve the homeostasis of both the ubiquitin-proteosome degradation system and lysosome-autophagy recycling system. Both systems have been implicated in the genetic forms of FTLD, with the latter system recognized to be associated with the majority of them

    Failure and impact behavior of facade panels made of glass fiber reinforced cement(GRC)

    Get PDF
    GRC is a cementitious composite material made up of a cement mortar matrix and chopped glass fibers. Due to its outstanding mechanical properties, GRC has been widely used to produce cladding panels and some civil engineering elements. Impact failure of cladding panels made of GRC may occur during production if some tool falls onto the panel, due to stone or other objects impacting at low velocities or caused by debris projected after a blast. Impact failure of a front panel of a building may have not only an important economic value but also human lives may be at risk if broken pieces of the panel fall from the building to the pavement. Therefore, knowing GRC impact strength is necessary to prevent economic costs and putting human lives at risk. One-stage light gas gun is an impact test machine capable of testing different materials subjected to impact loads. An experimental program was carried out, testing GRC samples of five different formulations, commonly used in building industry. Steel spheres were shot at different velocities on square GRC samples. The residual velocity of the projectiles was obtained both using a high speed camera with multiframe exposure and measuring the projectile’s penetration depth in molding clay blocks. Tests were performed on young and artificially aged GRC samples to compare GRC’s behavior when subjected to high strain rates. Numerical simulations using a hydrocode were made to analyze which parameters are most important during an impact event. GRC impact strength was obtained from test results. Also, GRC’s embrittlement, caused by GRC aging, has no influence on GRC impact behavior due to the small size of the projectile. Also, glass fibers used in GRC production only maintain GRC panels’ integrity but have no influence on GRC’s impact strength. Numerical models have reproduced accurately impact tests

    Analysis of glass fiber reinforced cement (GRC) fracture surfaces

    Get PDF
    Glass fiber reinforced cement (GRC) is a composite material produced by the union of a cement mortar matrix and chopped glass fibers. Its good mechanical properties deteriorate with time. This phenomenon has been studied performing a tensile test program on both young and aged samples of GRC produced by using different chemical additives. Once the tests were carried out, a microstructural analysis of fracture surfaces was performed using a scanning electronic microscope (SEM). Pictures taken showed that the addition of metakaolin enables more fibers to be pulled out from the matrix instead of being broken in aged GRC samples. However, the increase in the number of such fibers pulled out did not prevent the embrittlement of GRC. Also, all the other chemical additions used did not show any improvement in the mechanical properties of GRC

    Methanolic leaf extract of Punica granatum attenuates ischemia-reperfusion brain injury in Wistar rats: Potential antioxidant and anti-inflammatory mechanisms

    Get PDF
    Objective(s): This study was conducted to evaluate the cerebroprotective effect of methanolic leaf extract of Punica granatum (MePG) in Wistar rats.Materials and Methods: The MePG was initially assessed for in vitro antioxidant activity, and later evaluated on LPS-induced RAW 264.7 cell line assay. Finally, the MePG was evaluated against ischemia-reperfusion (I/R) induced brain injury in Wistar rats.Results: In DPPH, FRAP and ORAC assays, the MePG has exhibited potent antioxidant activity. Further, the MePG has significantly inhibited the generation of nitrite, ROS and TNF-α in LPS-induced RAW 264.7 cell lines. Besides, global ischemia followed by reperfusion caused significant changes in the neurological and behavioral functions in I/R control animals compared to sham control. Additionally, in the I/R control group there was a substantial decrease in the catalase and superoxide dismutase activities; Likewise, reduced glutathione levels reduced and lipid peroxidation levels enhanced significantly. Also, pro-inflammatory cytokines such as TNF-α, IL-6, and ICAM-I were increased and the levels of IL-10 was decreased significantly. Furthermore, the I/R insult caused increase in brain volume and cerebral infarct formation. Similarly, histopathology of the brain tissue revealed hallmarks like necrosis, leukocyte infiltration, cerebral edema and vascular congestion in I/R control. Notably, MePG (200 and 400 mg/kg) pretreatment for 7 days, has attenuated all the I/R-persuaded pathological changes compared to I/R control. In addition, the LC-MS/MS analysis showed presence of acteoside, apigenin, gallic acid, gossypin, pentagalloyl glucose, quercetin, and rutin as major ingredients in the MePG.Conclusion: These findings suggest that the MePG possesses significant cerebroprotective activity

    Momordica cymbalaria fruit extract attenuates high-fat diet-induced obesity and diabetes in C57BL/6 mice

    Get PDF
    Objective(s): The present study was aimed to evaluate the effect of methanolic fruit extract of Momordica cymbalaria (MeMC) against high-fat diet-induced obesity and diabetes in C57BL/7 mice.Materials and Methods: In the present study, six weeks old male C57BL/6 mice were divided into four groups. G-1 and G-2 served as lean control and HFD control, G-3 and G-4 received MeMC 25 and 50 mg/kg, BW doses; all the treatments were given for a period of 11 weeks. The parameters such as body weight, fasting blood glucose, insulin, cholesterol, free fatty acid, and oral glucose tolerance tests were performed, further, at the end of the study fasting body weight, and weights of organs such as the liver, heart, and adipose tissue were measured and the liver tissue was subjected to histopathology evaluation, and insulin resistance was expressed as HOMA-IR index. Results: The high-fat diet fed C57 mice showed significant elevation of body weight (

    Investigation of the antifungal and anti-aflatoxigenic potential of plant-based essential oils against aspergillus flavus in peanuts

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Aspergillus species are known to cause damage to food crops and are associated with opportunistic infections in humans. In the United States, significant losses have been reported in peanut production due to contamination caused by the Aspergillus species. This study evaluated the antifungal effect and anti-aflatoxin activity of selected plant-based essential oils (EOs) against Aspergillus flavus in contaminated peanuts, Tifguard, runner type variety. All fifteen essential oils, tested by the poisoned food technique, inhibited the growth of A. flavus at concentrations ranging between 125 and 4000 ppm. The most effective oils with total clearance of the A. flavus on agar were clove (500 ppm), thyme (1000 ppm), lemongrass, and cinnamon (2000 ppm) EOs. The gas chromatography-mass spectrometry (GC-MS) analysis of clove EO revealed eugenol (83.25%) as a major bioactive constituent. An electron microscopy study revealed that clove EO at 500 ppm caused noticeable morphological and ultrastructural alterations of the somatic and reproductive structures. Using both the ammonia vapor (AV) and coconut milk agar (CMA) methods, we not only detected the presence of an aflatoxigenic form of A. flavus in our contaminated peanuts, but we also observed that aflatoxin production was inhibited by clove EO at concentrations between 500 and 2000 ppm. In addition, we established a correlation between the concentration of clove EO and AFB1 production by reverse-phase high-performance liquid chromatography (HPLC). We demonstrate in our study that clove oil could be a promising natural fungicide for an effective bio-control, non-toxic bio-preservative, and an eco-friendly alternative to synthetic additives against A. flavus in Georgia peanuts

    Current Perspectives of Biocontrol Agents for Management of and Its Fumonisin in Cereals-A Review

    Get PDF
    is the most predominant fungal phytopathogen of cereals and it is posing great concern from a global perspective. The fungus is mainly associated with maize, rice, sorghum, wheat, sugarcane, banana, and asparagus and causes cob, stalk, ear, root, crown, top, and foot rot. produces fumonisins as the major secondary metabolite along with trace levels of beauvericin, fusaric acid, fusarin C, gibberiliformin, and moniliformin. Being a potential carcinogen, fumonisins continue to receive major attention as they are common contaminants in cereals and its processed food products. The importance of elimination of growth and its associated fumonisin from cereals cannot be overemphasized considering the significant health hazards associated with its consumption. Physical and chemical approaches have been shown to reduce fumonisin B1 concentrations among feeds and food products but have proved to be ineffective during the production process. Hence, biological control methods using microorganisms, plant extracts, antioxidants, essential oils, phenolic compounds, and other advanced technologies such as growing disease-resistant crops by applying genetic engineering, have become an effective alternative for managing and its toxin. The different methods, challenges, and concerns regarding the biocontrol of and production of fumonisin B1 have been addressed in the present review

    Multiplex PCR for the early detection of fumonisin producing Fusarium verticillioides

    No full text
    In the present study, fumonisin producing Fusarium verticillioides was specifically detected in pure cultures, cereal samples and plant materials by multiplex PCR using one forward VERTF-1 and two reverse primers VERTR and VERTF-2. A total of 326 Fusarium isolates were obtained from maize, sorghum, paddy wheat and pearl millet samples collected from different districts of Karnataka, India. All Fusarium species were subjected to single round of PCR with species specific and fumonisin specific primers which recorded 59.50 of F. verticillioides and 53.98 of fumonisin producing F. verticillioides. Maize samples recorded highest frequency 34.42 of fumonisin producing F. verticillioides followed by paddy 28.57 and sorghum 16.66. Sensitivity of multiplex PCR experiment was conducted by whole grain experiment of the collected cereals, roots and leaves of the cereal samples by diluting the DNA 10 to 100 times in which 1:50, 1:75 and 1:100 diluted samples recorded positive. The developed multiplex PCR assay provided a powerful tool for the accurate detection, identification and discrimination of potential fumonisin producing F. verticillioides strains among the population. The present study is the first report of developing the multiplex PCR method for early detection of fumonisin producing F. verticillioides from cereal samples, pure cultures and plant parts
    corecore