13 research outputs found

    Relationship between endophenotype and phenotype in ADHD

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been hypothesized that genetic and environmental factors relate to psychiatric disorders through the effect of intermediating, vulnerability traits called endophenotypes. The study had a threefold aim: to examine the predictive validity of an endophenotypic construct for the ADHD diagnosis, to test whether the magnitude of group differences at the endophenotypic and phenotypic level is comparable, and to investigate whether four factors (gender, age, IQ, rater bias) have an effect (moderation or mediation) on the relation between endophenotype and phenotype.</p> <p>Methods</p> <p>Ten neurocognitive tasks were administered to 143 children with ADHD, 68 non-affected siblings, and 120 control children (first-borns) and 132 children with ADHD, 78 non-affected siblings, and 113 controls (second-borns) (5 – 19 years). The task measures have been investigated previously for their endophenotypic viability and were combined to one component which was labeled 'the endophenotypic construct': one measure representative of endophenotypic functioning across several domains of functioning.</p> <p>Results</p> <p>The endophenotypic construct classified children with moderate accuracy (about 50% for each of the three groups). Non-affected children differed as much from controls at the endophenotypic as at the phenotypic level, but affected children displayed a more severe phenotype than endophenotype. Although a potentially moderating effect (age) and several mediating effects (gender, age, IQ) were found affecting the relation between endophenotypic construct and phenotype, none of the effects studied could account for the finding that affected children had a more severe phenotype than endophenotype.</p> <p>Conclusion</p> <p>Endophenotypic functioning is moderately predictive of the ADHD diagnosis, though findings suggest substantial overlap exists between endophenotypic functioning in the groups of affected children, non-affected siblings, and controls. Results suggest other factors may be crucial and aggravate the ADHD symptoms in affected children.</p

    Effects of maternal and paternal smoking on attentional control in children with and without ADHD

    Get PDF
    Maternal smoking during pregnancy is a risk factor for attention-deficit/hyperactivity disorder (ADHD), but data on its adverse effects on cognitive functioning are sparse and inconsistent. Since the effect of maternal smoking during pregnancy may be due to correlated genetic risk factors rather than being a pure environmental effect, we examined the effect of prenatal exposure to smoking on attentional control, taking into account the effects of both maternal and paternal smoking, and examined whether these effects were genetically mediated by parental genotypes. We further examined whether the effect of prenatal exposure to smoking on attentional control interacted with genotypes of the child. Participants were 79 children with ADHD, ascertained for the International Multi-centre ADHD Gene project (IMAGE), and 105 normal controls. Attentional control was assessed by a visual continuous performance task. Three genetic risk factors for ADHD (DRD4 7-repeat allele of the exon 3 variable number of tandem repeats (VNTR), DAT1 10/10 genotype of the VNTR located in the 3′ untranslated region, and the DAT1 6/6 genotype of the intron 8 VNTR) were included in the analyses. Paternal smoking had a negative effect on attentional control in children with ADHD and this effect appeared to be mediated by genetic risk factors. The prenatal smoking effect did not interact with genotypes of the child. Maternal smoking had no main effect on attentional control, which may be due to lower smoking rates. This study suggests that the effects of paternal smoking on attentional control in children with ADHD should be considered a proxy for ADHD and/or smoking risk genes. Future studies should examine if the results can be generalized to other cognitive domains

    Speed, Variability, and Timing of Motor Output in ADHD: Which Measures are Useful for Endophenotypic Research?

    Get PDF
    Attention-Deficit/Hyperactivity Disorder (ADHD) shares a genetic basis with motor coordination problems and probably motor timing problems. In line with this, comparable problems in motor timing should be observed in first degree relatives and might, therefore, form a suitable endophenotypic candidate. This hypothesis was investigated in 238 ADHD-families (545 children) and 147 control-families (271 children). A motor timing task was administered, in which children had to produce a 1,000 ms interval. In addition to this task, two basic motor tasks were administered to examine speed and variability of motor output, when no timing component was required. Results indicated that variability in motor timing is a useful endophenotypic candidate: It was clearly associated with ADHD, it was also present in non-affected siblings, and it correlated within families. Accuracy (under- versus over-production) in motor timing appeared less useful: Even though accuracy was associated with ADHD (probands and affected siblings had a tendency to under-produce the 1,000 ms interval compared to controls), non-affected siblings did not differ from controls and sibling correlations were only marginally significant. Slow and variable motor output without timing component also appears present in ADHD, but not in non-affected siblings, suggesting these deficits not to be related to a familial vulnerability for ADHD. Deficits in motor timing could not be explained by deficits already present in basic motor output without a timing component. This suggests abnormalities in motor timing were predominantly related to deficient motor timing processes and not to general deficient motor functioning. The finding that deficits in motor timing run in ADHD-families suggests this to be a fruitful domain for further exploration in relation to the genetic underpinnings of ADHD

    Comorbid problems in ADHD: degree of association, shared endophenotypes, and formation of distinct subtypes: Implications for a future DSM

    Get PDF
    We aimed to assess which comorbid problems (oppositional defiant behaviors, anxiety, autistic traits, motor coordination problems, and reading problems) were most associated with Attention-Deficit/Hyperactivity Disorder (ADHD); to determine whether these comorbid problems shared executive and motor problems on an endophenotype level with ADHD; and to determine whether executive functioning (EF)-and motor-endophenotypes supported the hypothesis that ADHD with comorbid problems is a qualitatively different phenotype than ADHD without comorbid problems. An EF-and a motor-endophenotype were formed based on nine neuropsychological tasks administered to 816 children from ADHD-and control-families. Additional data on comorbid problems were gathered using questionnaires. Results indicated that oppositional defiant behaviors appeared the most important comorbid problems of ADHD, followed by autistic traits, and than followed by motor coordination problems, anxiety, and reading problems. Both the EF-and motor-endophenotype were correlated and cross-correlated in siblings to autistic traits, motor coordination problems and reading problems, suggesting ADHD and these comorbid problems may possibly share familial/genetic EF and motor deficits. No such results were found for oppositional defiant behaviors and anxiety. ADHD in co-occurrence with comorbid problems may not be best seen as a distinct subtype of ADHD, but further research is warranted

    Are motor inhibition and cognitive flexibility dead ends in ADHD?

    Get PDF
    Contains fulltext : 53518.pdf (publisher's version ) (Closed access)Executive dysfunction has been postulated as the core deficit in ADHD, although many deficits in lower order cognitive processes have also been identified. By obtaining an appropriate baseline of lower order cognitive functioning light may be shed on as to whether executive deficits result from problems in lower order and/or higher order cognitive processes. We examined motor inhibition and cognitive flexibility in relation to a baseline measure in 816 children from ADHD and control families. Multiple children in a family were tested in order to examine the familiality of the measures. No evidence was found for deficits in motor inhibition or cognitive flexibility in children with ADHD or their nonaffected siblings: Compared to their baseline speed and accuracy of responding, children with ADHD and their (non)affected siblings were not disproportionally slower or inaccurate when demands for motor inhibition or cognitive flexibility were added to the task. However, children with ADHD and their (non)affected siblings were overall less accurate than controls, which could not be attributed to differences in response speed. This suggests that inaccuracy of responding is characteristic of children having (a familial risk for) ADHD. Motor inhibition and cognitive flexibility as operationalized with mean reaction time were found to be familial. It is concluded that poorer performance on executive tasks in children with ADHD and their (non)affected siblings may result from deficiencies in lower order cognitive processes and not (only) from higher order cognitive processes/executive functions

    Quantitative Linkage for Autism Spectrum Disorders Symptoms in Attention-Deficit/Hyperactivity Disorder:Significant Locus on Chromosome 7q11

    No full text
    We studied 261 ADHD probands and 354 of their siblings to assess quantitative trait loci associated with autism spectrum disorder symptoms (as measured by the Children's Social Behavior Questionnaire (CSBQ)) using a genome-wide linkage approach, followed by locus-wide association analysis. A genome-wide significant locus for the CSBQ subscale addressing social interaction was found on chromosome 7q11, with suggestive signals supporting this locus on three other CSBQ subscales. We identified two other suggestive loci for the CSBQ total scale and individual subscales on chromosomes 4q35 and 7p12. Fine-mapping the significantly linked locus resulted in interesting candidate genes, although their association was not significant after permutation testing

    Neuropsychological Endophenotype Approach to Genome-wide Linkage Analysis Identifies Susceptibility Loci for ADHD on 2q21.1 and 13q12.11

    Get PDF
    ADHD linkage findings have not all been consistently replicated, suggesting that other approaches to linkage analysis in ADHD might be necessary, such as the use of (quantitative) endophenotypes (heritable traits associated with an increased risk for ADHD). Genome-wide linkage analyses were performed in the Dutch subsample of the International Multi-Center ADHD Genetics (IMAGE) study comprising 238 DSM-IV combined-type ADHD probands and their 112 affected and 195 nonaffected siblings. Eight candidate neuropsychological ADHD endophenotypes with heritabilities > 0.2 were used as quantitative traits. In addition, an overall component score of neuropsychological functioning was used. A total of 5407 autosomal single-nucleotide polymorphisms (SNPs) were used to run multipoint regression-based linkage analyses. Two significant genome-wide linkage signals were found, one for Motor Timing on chromosome 2q21.1 (LOD score: 3.944) and one for Digit Span on 13q12.11 (LOD score: 3.959). Ten suggestive linkage signals were found (LOD scores ≥ 2) on chromosomes 2p, 2q, 3p, 4q, 8q, 12p, 12q, 14q, and 17q. The suggestive linkage signal for the component score that was found at 2q14.3 (LOD score: 2.878) overlapped with the region significantly linked to Motor Timing. Endophenotype approaches may increase power to detect susceptibility loci in ADHD and possibly in other complex disorders
    corecore