21 research outputs found

    Caractérisation par imagerie en temps réel de cultures cellulaires hépatiques en biopuces microfluidiques

    Get PDF
    Le développement de méthodes alternatives à la culture in vivo pour l évaluation de la toxicité des molécules chimiques s est accéléré ces derniÚres années, l objectif étant de limiter l utilisation d animaux. Préconisés par l OCDE (Organisation de coopération et de développement économiques), ces modÚles alternatifs visent à mimer les conditions physiologiques en employant des systÚmes in vitro ou in silico. Parmi les différents systÚmes développés, les biopuces microfluidiques ont prouvé leur contribution à l amélioration des fonctions cellulaires, ce qui permet des études toxicologiques pertinentes. Les travaux de ce doctorat sont basés sur l emploi de ces biopuces pour cultiver des hépatocytes (cellules du foie) et portent sur la mise au point d une méthode d analyse d images issues de ces cultures sous microscope au cours du temps. L acquisition d images tout au long de l expérience permet de suivre, aprÚs traitement, l évolution et le comportement des cellules au contact de molécules chimiques et d évaluer les réponses toxicologiques. Les premiers résultats de ces travaux ont permis l amélioration du procédé de culture microfluidique adaptée au matériel d acquisition d images, la sélection de sondes fluorescentes, et le choix d un algorithme de traitement des images sur CellProfiler. Cela nous a permis de quantifier et caractériser certaines fonctions biologiques au sein de la biopuce comme l activité mitochondriale. Le potentiel de cet outil pour évaluer la toxicité de molécule a été testé grùce à l emploi d un toxique connu : la staurosporine. Les résultats obtenus ont révélé l impact de la mise en culture en dynamique sur le comportement des hépatocytes, et la toxicité de la staurosporine visible en biopuce.The development of alternative methods of in vivo cultures for the toxicological evaluation of chemical molecules has accelerated this last years, in order to limit the use of animals. Recommended by the OECD (Organisation for Economic Cooperation and Development), these alternative models are designed to mimic the physiological conditions using in vitro or in silico systems. Among the developed systems, microfluidic biochips have proven their contribution to the improvement of cellular functions, which allows relevant toxicological studies. This PhD thesis is based on the use of these biochips for hepatocytes culture and focus on the development of an analysis method for study these cultures under microscope over time using imaging. Image acquisition throughout the experiment enables to analyze, after image processing, the evolution and the behavior of cells in contact with chemical molecules and to evaluate toxicological responses. The first results of this work led to the optimization of the microfluidic cultures under the microscope used to get the image sequences, the selection of fluorescent probes and the development of an image processing system with CellProfiler. These works allowed the quantification and the characterization of some biological functions within the biochip such as the mitochondrial activity. Staurosporine, a well-known toxic, has been used to test the potential of this tool to evaluate the toxicity of molecules. The results showed the impact of dynamic culture on the hepatocytes behavior, and the staurosporine toxicity, in biochip cultures.COMPIEGNE-BU (601592101) / SudocSudocFranceF

    Caractérisation par imagerie en temps réel de cultures cellulaires hépatiques en biopuces microfluidiques

    No full text
    The development of alternative methods of in vivo cultures for the toxicological evaluation of chemical molecules has accelerated this last years, in order to limit the use of animals. Recommended by the OECD (Organisation for Economic Cooperation and Development), these alternative models are designed to mimic the physiological conditions using in vitro or in silico systems. Among the developed systems, microfluidic biochips have proven their contribution to the improvement of cellular functions, which allows relevant toxicological studies. This PhD thesis is based on the use of these biochips for hepatocytes culture and focus on the development of an analysis method for study these cultures under microscope over time using imaging. Image acquisition throughout the experiment enables to analyze, after image processing, the evolution and the behavior of cells in contact with chemical molecules and to evaluate toxicological responses. The first results of this work led to the optimization of the microfluidic cultures under the microscope used to get the image sequences, the selection of fluorescent probes and the development of an image processing system with CellProfiler. These works allowed the quantification and the characterization of some biological functions within the biochip such as the mitochondrial activity. Staurosporine, a well-known toxic, has been used to test the potential of this tool to evaluate the toxicity of molecules. The results showed the impact of dynamic culture on the hepatocytes behavior, and the staurosporine toxicity, in biochip cultures.Le dĂ©veloppement de mĂ©thodes alternatives Ă  la culture in vivo pour l’évaluation de la toxicitĂ© des molĂ©cules chimiques s’est accĂ©lĂ©rĂ© ces derniĂšres annĂ©es, l’objectif Ă©tant de limiter l’utilisation d’animaux. PrĂ©conisĂ©s par l’OCDE (Organisation de coopĂ©ration et de dĂ©veloppement Ă©conomiques), ces modĂšles alternatifs visent Ă  mimer les conditions physiologiques en employant des systĂšmes in vitro ou in silico. Parmi les diffĂ©rents systĂšmes dĂ©veloppĂ©s, les biopuces microfluidiques ont prouvĂ© leur contribution Ă  l’amĂ©lioration des fonctions cellulaires, ce qui permet des Ă©tudes toxicologiques pertinentes. Les travaux de ce doctorat sont basĂ©s sur l’emploi de ces biopuces pour cultiver des hĂ©patocytes (cellules du foie) et portent sur la mise au point d’une mĂ©thode d’analyse d’images issues de ces cultures sous microscope au cours du temps. L’acquisition d’images tout au long de l’expĂ©rience permet de suivre, aprĂšs traitement, l’évolution et le comportement des cellules au contact de molĂ©cules chimiques et d’évaluer les rĂ©ponses toxicologiques. Les premiers rĂ©sultats de ces travaux ont permis l’amĂ©lioration du procĂ©dĂ© de culture microfluidique adaptĂ©e au matĂ©riel d’acquisition d’images, la sĂ©lection de sondes fluorescentes, et le choix d’un algorithme de traitement des images sur CellProfiler. Cela nous a permis de quantifier et caractĂ©riser certaines fonctions biologiques au sein de la biopuce comme l’activitĂ© mitochondriale. Le potentiel de cet outil pour Ă©valuer la toxicitĂ© de molĂ©cule a Ă©tĂ© testĂ© grĂące Ă  l’emploi d’un toxique connu : la staurosporine. Les rĂ©sultats obtenus ont rĂ©vĂ©lĂ© l’impact de la mise en culture en dynamique sur le comportement des hĂ©patocytes, et la toxicitĂ© de la staurosporine visible en biopuce

    Characterization of liver cell culture in micro-fluidic biochips by a real time imaging analysis

    No full text
    Le dĂ©veloppement de mĂ©thodes alternatives Ă  la culture in vivo pour l’évaluation de la toxicitĂ© des molĂ©cules chimiques s’est accĂ©lĂ©rĂ© ces derniĂšres annĂ©es, l’objectif Ă©tant de limiter l’utilisation d’animaux. PrĂ©conisĂ©s par l’OCDE (Organisation de coopĂ©ration et de dĂ©veloppement Ă©conomiques), ces modĂšles alternatifs visent Ă  mimer les conditions physiologiques en employant des systĂšmes in vitro ou in silico. Parmi les diffĂ©rents systĂšmes dĂ©veloppĂ©s, les biopuces microfluidiques ont prouvĂ© leur contribution Ă  l’amĂ©lioration des fonctions cellulaires, ce qui permet des Ă©tudes toxicologiques pertinentes. Les travaux de ce doctorat sont basĂ©s sur l’emploi de ces biopuces pour cultiver des hĂ©patocytes (cellules du foie) et portent sur la mise au point d’une mĂ©thode d’analyse d’images issues de ces cultures sous microscope au cours du temps. L’acquisition d’images tout au long de l’expĂ©rience permet de suivre, aprĂšs traitement, l’évolution et le comportement des cellules au contact de molĂ©cules chimiques et d’évaluer les rĂ©ponses toxicologiques. Les premiers rĂ©sultats de ces travaux ont permis l’amĂ©lioration du procĂ©dĂ© de culture microfluidique adaptĂ©e au matĂ©riel d’acquisition d’images, la sĂ©lection de sondes fluorescentes, et le choix d’un algorithme de traitement des images sur CellProfiler. Cela nous a permis de quantifier et caractĂ©riser certaines fonctions biologiques au sein de la biopuce comme l’activitĂ© mitochondriale. Le potentiel de cet outil pour Ă©valuer la toxicitĂ© de molĂ©cule a Ă©tĂ© testĂ© grĂące Ă  l’emploi d’un toxique connu : la staurosporine. Les rĂ©sultats obtenus ont rĂ©vĂ©lĂ© l’impact de la mise en culture en dynamique sur le comportement des hĂ©patocytes, et la toxicitĂ© de la staurosporine visible en biopuce.The development of alternative methods of in vivo cultures for the toxicological evaluation of chemical molecules has accelerated this last years, in order to limit the use of animals. Recommended by the OECD (Organisation for Economic Cooperation and Development), these alternative models are designed to mimic the physiological conditions using in vitro or in silico systems. Among the developed systems, microfluidic biochips have proven their contribution to the improvement of cellular functions, which allows relevant toxicological studies. This PhD thesis is based on the use of these biochips for hepatocytes culture and focus on the development of an analysis method for study these cultures under microscope over time using imaging. Image acquisition throughout the experiment enables to analyze, after image processing, the evolution and the behavior of cells in contact with chemical molecules and to evaluate toxicological responses. The first results of this work led to the optimization of the microfluidic cultures under the microscope used to get the image sequences, the selection of fluorescent probes and the development of an image processing system with CellProfiler. These works allowed the quantification and the characterization of some biological functions within the biochip such as the mitochondrial activity. Staurosporine, a well-known toxic, has been used to test the potential of this tool to evaluate the toxicity of molecules. The results showed the impact of dynamic culture on the hepatocytes behavior, and the staurosporine toxicity, in biochip cultures

    Investigation of acetaminophen toxicity in HepG2/ C3a microscale cultures using a system biology model of glutathione depletion

    No full text
    We have integrated in vitro and in silico information to investigate acetaminophen (APAP) and its metabolite N-acetyl-p-benzoquinone imine (NAPQI) toxicity in liver biochip. In previous works, we observed higher cytotoxicity of HepG2/C3a cultivated in biochips when exposed to 1 mM of APAP for 72 h as compared to Petri cultures. We complete our investigation with the present in silico approach to extend the mechanistic interpretation of the intracellular kinetics of the toxicity process. For that purpose, we propose a mathematical model based on the coupling of a drug pharmacokinetic model (PK) with a systemic biology model (SB) describing the reactive oxygen species (ROS) production by NAPQI and the subsequent glutathione (GSH) depletion. The SB model was parameterized using (i) transcriptomic data, (ii) qualitative results of time lapses ROS fluorescent curves for both control and 1-mM APAP-treated experiments, and (iii) additional GSH literature data. The PK model was parameterized (i) using the in vitro kinetic data (at 160 [micro]M, 1 mM, 10 mM), (ii) using the parameters resulting from a physiologically based pharmacokinetic (PBPK) literature model for APAP, and (iii) by literature data describing NAPQI formation. The PK-SB model predicted a ROS increase and GSH depletion due to the NAPQI formation. The transition from a detoxification phase and NAPQI and ROS accumulation was predicted for a NAPQI concentration ranging between 0.025 and 0.25 [micro]M in the cytosol. In parallel, we performed a dose response analysis in biochips that shows a reduction of the final hepatic cell number appeared in agreement with the time and doses associated with the switch of the NAPQI detoxification/accumulation. As a result, we were able to correlate in vitro extracellular APAP exposures with an intracellular in silico ROS accumulation using an integration of a coupled mathematical and experimental liver on chip approach

    Oxidized Burgundy Chardonnay wines: sensory space boundaries, and identification of volatile target compounds

    No full text
    International audienceBurgundy Chardonnay wines have been subject to oxidative degradation for almost ten years now, but the phenomenon particularly concerns young wines. Early oxidation produces untypical aging off-flavors. Better knowledge of the implicated volatile compounds should help conserve young wine aroma. The present article looks at the new insights in term of boundaries and description provided by sensory space analysis. The first phase involved making a selection of wines that are consensually recognized as oxidized and non-oxidized. A small number of selected wines corresponding to the contrasting sensory subsets were analysed by gas chromatography olfactometry (GC-O) and gas chromatography mass spectrometry (GC-MS). Additional experiments examined sought: a) to detect odorant areas specific to oxidized wines; and b) to identify and quantify the volatile compounds related to the aroma produced by oxidative degradation

    Metabolomics-on-a-chip of hepatotoxicity induced by anticancer drug flutamide and its active metabolite hydroxyflutamide using HepG2/C3a microfluidic biochips

    No full text
    International audienceWe used the recently introduced "metabolomics-on-a-chip" approach to test secondary drug toxicity in bioartificial organs. Bioartificial organs cultivated in microfluidic culture conditions provide a beneficial environment, in which the cellular cytoprotective mechanisms are enhanced, compared with Petri dish culture conditions. We investigated the metabolic response of HepG2/C3a cells exposed to flutamide, an anticancer prodrug, and hydroxyflutamide (HF), its active metabolite, in a microfluidic biochip. The cellular response was analyzed by (1)H nuclear magnetic resonance spectroscopy to identify cell-specific molecule-response markers. The metabolic response to flutamide results in a disruption of glucose homeostasis and in mitochondrial dysfunctions. This flutamide-specific metabolic response was illustrated by a reduction of the extracellular glucose and fructose consumptions and a general reduction of the tricarboxylic acid cycle activity leading to the reduction of the consumption of several amino acids. We also found a higher production of 3-hydroxybutyrate and lactate, and the reduction of the albumin production compared with controls. The toxic metabolic signature associated with the active metabolite HF was illustrated by a high-energy demand and an increase in several amino acid metabolism. Finally, for both molecules, the hepatotoxicity was correlated to the glutathione (GSH) metabolism illustrated by the levels of the 2-hydroxybutyrate and pyroglutamate productions and the increase of the glutamate and glycine productions. Thus, the entire set of results contributed to extract specific mechanistic toxic signatures and their relation to hepatotoxicity, which appeared consistent with literature reports. As new finding of HepG2/C3a cells hepatotoxicity, we propose a metabolic network with a related list of metabolite variations to describe the GSH depletion when followed by a cell death for the HepG2/C3a cells cultivated in our polydimethylsiloxane microfluidic biochips. Our findings illustrate the potential of metabolomics-on-a-chip as an in vitro alternative method for predictive toxicology

    An Alginate-Based Hydrogel with a High Angiogenic Capacity and a High Osteogenic Potential

    No full text
    International audienceIn bone tissue engineering, autologous cells are combined with osteoconductive scaffolds and implanted into bone defects. The major challenge is the lack of post-implantation vascular growth into biomaterial. The objective of the present study was to develop a new alginate-based hydrogel that enhances the regeneration of bone defects after surgery. The viability of human bone marrow-derived mesenchymal stem cells (BM-MSCs) or human endothelial cells (ECs) cultured alone or together on the hydrogel was analyzed for 24 and 96 h. After seeding, the cells self-assembled and aggregated to form clusters. For functional validation, empty or cellularized hydrogel matrices were implanted ectopically at subcutaneous sites in nude mice. After 2 months, the matrices were explanted. Transplanted human cells were present, and we observed vessels expressing human von Willebrand factor (resulting from the incorporation of transplanted ECs into neovessels and/or the differentiation of BM-MSCs into ECs). The addition of BM-MSCs improved host vascularization and neovessel formation from human cells, relative to ECs alone. Although we did not observe bone formation, the transplanted BM-MSCs were able to differentiate into osteoblasts. This new biomaterial provided an appropriate three-dimensional environment for transplanted cells and has a high angiogenic capacity and an osteogenic potential
    corecore