26,264 research outputs found

    Off-equilibrium corrections to energy and conserved charge densities in the relativistic fluid in heavy-ion collisions

    Full text link
    Dissipative processes in relativistic fluids are known to be important in the analyses of the hot QCD matter created in high-energy heavy-ion collisions. In this work, I consider dissipative corrections to energy and conserved charge densities, which are conventionally assumed to be vanishing but could be finite. Causal dissipative hydrodynamics is formulated in the presence of those dissipative currents. The relation between hydrodynamic stability and transport coefficients is discussed. I then study their phenomenological consequences on the observables of heavy-ion collisions in numerical simulations. It is shown that particle spectra and elliptic flow can be visibly modified.Comment: 10 pages, 5 figures; title changed, references added, conclusions unchange

    Optimization of 2-d lattice cellular automata for pseudorandom number generation

    Get PDF
    This paper proposes a generalized approach to 2-d CA PRNGs – the 2-d lattice CA PRNG – by introducing vertical connections to arrays of 1-d CA. The structure of a 2-d lattice CA PRNG lies in between that of 1-d CA and 2-d CA grid PRNGs. With the generalized approach, 2-d lattice CA PRNG offers more 2-d CA PRNG variations. It is found that they can do better than the conventional 2-d CA grid PRNGs. In this paper, the structure and properties of 2-d lattice CA are explored by varying the number and location of vertical connections, and by searching for different 2-d array settings that can give good randomness based on Diehard test. To get the most out of 2-d lattice CA PRNGs, genetic algorithm is employed in searching for good neighborhood characteristics. By adopting an evolutionary approach, the randomness quality of 2-d lattice CA PRNGs is optimized. In this paper, a new metric, #rn is introduced as a way of finding a 2-d lattice CA PRNG with the least number of cells required to pass Diehard test. Following the introduction of the new metric #rn, a cropping technique is presented to further boost the CA PRNG performance. The cost and efficiency of 2-d lattice CA PRNG is compared with past works on CA PRNGs

    Effect of previous handling experiences on responses of dairy calves to routine husbandry procedures

    Get PDF
    The nature of human–animal interactions is an important factor contributing to animal welfare and productivity. Reducing stress during routine husbandry procedures is likely to improve animal welfare. We examined how the type of early handling of calves affected responses to two common husbandry procedures, ear-tagging and disbudding. Forty Holstein–Friesian calves (n = 20/treatment) were exposed to one of two handling treatments daily from 1 to 5 weeks of age: (1) positive (n = 20), involving gentle handling (soft voices, slow movements, patting), and (2) negative (n = 20), involving rough handling (rough voices, rapid movements, pushing). Heart rate (HR), respiration rate (RR) and behaviour (activity, tail flicking) were measured before and after ear-tagging and disbudding (2 days apart). Cortisol was measured at −20 (baseline), 20 and 40 min relative to disbudding time. There were no significant treatment differences in HR, RR or behaviour in response to either procedure. However, the following changes occurred across both treatment groups. HR increased after disbudding (by 14.7 ± 4.0 and 18.6 ± 3.8 bpm, positive and negative, respectively; mean ± s.e.m.) and ear-tagging (by 8.7 ± 3.1 and 10.3 ± 3.0 bpm, positive and negative, respectively). After disbudding, there was an increase in RR (by 8.2 ± 3.4 and 9.3 ± 3.4 breaths/min, positive and negative, respectively), overall activity (by 9.4 ± 1.2 and 9.9 ± 1.3 frequency/min, positive and negative, respectively) and tail flicking (by 13.2 ± 2.8 and 11.2 ± 3.0 frequency/min, positive and negative, respectively), and cortisol increased from baseline at 20 min post procedure (by 10.3 ± 1.1 and 12.3 ± 1.1 nmol/l positive and negative, respectively). Although we recorded significant changes in calf responses during ear-tagging and disbudding, the type of prior handling had no effect on responses. The effects of handling may have been overridden by the degree of pain and/or stress associated with the procedures. Further research is warranted to understand the welfare impact and interaction between previous handling and responses to husbandry procedures

    Emergence of complex and spinor wave functions in Scale Relativity. II. Lorentz invariance and bi-spinors

    Full text link
    Owing to the non-differentiable nature of the theory of Scale Relativity, the emergence of complex wave functions, then of spinors and bi-spinors occurs naturally in its framework. The wave function is here a manifestation of the velocity field of geodesics of a continuous and non-differentiable (therefore fractal) space-time. In a first paper (Paper I), we have presented the general argument which leads to this result using an elaborate and more detailed derivation than previously displayed. We have therefore been able to show how the complex wave function emerges naturally from the doubling of the velocity field and to revisit the derivation of the non relativistic Schr\"odinger equation of motion. In the present paper (Paper II) we deal with relativistic motion and detail the natural emergence of the bi-spinors from such first principles of the theory. Moreover, while Lorentz invariance has been up to now inferred from mathematical results obtained in stochastic mechanics, we display here a new and detailed derivation of the way one can obtain a Lorentz invariant expression for the expectation value of the product of two independent fractal fluctuation fields in the sole framework of the theory of Scale Relativity. These new results allow us to enhance the robustness of our derivation of the two main equations of motion of relativistic quantum mechanics (the Klein-Gordon and Dirac equations) which we revisit here at length.Comment: 24 pages, no figure; very minor corrections to fit the published version: a few typos and a completed referenc

    The crucial importance of the t2gt_{2g}--ege_g hybridization in transition metal oxides

    Full text link
    We studied the influence of the trigonal distortion of the regular octahedron along the (111) direction, found in the CoO2\rm CoO_2 layers. Under such a distortion the t2gt_{2g} orbitals split into one a1ga_{1g} and two degenerated ege_g^\prime orbitals. We focused on the relative order of these orbitals. Using quantum chemical calculations of embedded clusters at different levels of theory, we analyzed the influence of the different effects not taken into account in the crystalline field theory; that is metal-ligand hybridization, long-range crystalline field, screening effects and orbital relaxation. We found that none of them are responsible for the relative order of the t2gt_{2g} orbitals. In fact, the trigonal distortion allows a mixing of the t2gt_{2g} and ege_g orbitals of the metallic atom. This hybridization is at the origin of the a1ga_{1g}--ege_g^\prime relative order and of the incorrect prediction of the crystalline field theory

    Generators of simple Lie algebras in arbitrary characteristics

    Full text link
    In this paper we study the minimal number of generators for simple Lie algebras in characteristic 0 or p > 3. We show that any such algebra can be generated by 2 elements. We also examine the 'one and a half generation' property, i.e. when every non-zero element can be completed to a generating pair. We show that classical simple algebras have this property, and that the only simple Cartan type algebras of type W which have this property are the Zassenhaus algebras.Comment: 26 pages, final version, to appear in Math. Z. Main improvements and corrections in Section 4.

    Universal fluctuations in heavy-ion collisions in the Fermi energy domain

    Full text link
    We discuss the scaling laws of both the charged fragments multiplicity fluctuations and the charge of the largest fragment fluctuations for Xe+Sn collisions in the range of bombarding energies between 25 MeV/A and 50 MeV/A. We show close to E_{lab}=32 MeV/A the transition in the fluctuation regime of the charge of the largest fragment which is compatible with the transition from the ordered to disordered phase of excited nuclear matter. The size (charge) of the largest fragment is closely related to the order parameter characterizing this process.Comment: 4 pages, 3 figure

    Measurement of heavy-hole spin dephasing in (InGa)As quantum dots

    Full text link
    We measure the spin dephasing of holes localized in self-assembled (InGa)As quantum dots by spin noise spectroscopy. The localized holes show a distinct hyperfine interaction with the nuclear spin bath despite the p-type symmetry of the valence band states. The experiments reveal a short spin relaxation time {\tau}_{fast}^{hh} of 27 ns and a second, long spin relaxation time {\tau}_{slow}^{hh} which exceeds the latter by more than one order of magnitude. The two times are attributed to heavy hole spins aligned perpendicular and parallel to the stochastic nuclear magnetic field. Intensity dependent measurements and numerical simulations reveal that the long relaxation time is still obscured by light absorption, despite low laser intensity and large detuning. Off-resonant light absorption causes a suppression of the spin noise signal due to the creation of a second hole entailing a vanishing hole spin polarization.Comment: accepted to be published in AP

    Anharmonic vs. relaxational sound damping in glasses: II. Vitreous silica

    Full text link
    The temperature dependence of the frequency dispersion in the sound velocity and damping of vitreous silica is reanalyzed. Thermally activated relaxation accounts for the sound attenuation observed above 10 K at sonic and ultrasonic frequencies. Its extrapolation to the hypersonic regime reveals that the anharmonic coupling to the thermal bath becomes important in Brillouin-scattering measurements. At 35 GHz and room temperature, the damping due to this anharmonicity is found to be nearly twice that produced by thermally activated relaxation. The analysis also reveals a sizeable velocity increase with temperature which is not related with sound dispersion. This suggests that silica experiences a gradual structural change that already starts well below room temperature.Comment: 13 pages with 8 figure
    corecore