The temperature dependence of the frequency dispersion in the sound velocity
and damping of vitreous silica is reanalyzed. Thermally activated relaxation
accounts for the sound attenuation observed above 10 K at sonic and ultrasonic
frequencies. Its extrapolation to the hypersonic regime reveals that the
anharmonic coupling to the thermal bath becomes important in
Brillouin-scattering measurements. At 35 GHz and room temperature, the damping
due to this anharmonicity is found to be nearly twice that produced by
thermally activated relaxation. The analysis also reveals a sizeable velocity
increase with temperature which is not related with sound dispersion. This
suggests that silica experiences a gradual structural change that already
starts well below room temperature.Comment: 13 pages with 8 figure