In this paper we study the minimal number of generators for simple Lie
algebras in characteristic 0 or p > 3. We show that any such algebra can be
generated by 2 elements. We also examine the 'one and a half generation'
property, i.e. when every non-zero element can be completed to a generating
pair. We show that classical simple algebras have this property, and that the
only simple Cartan type algebras of type W which have this property are the
Zassenhaus algebras.Comment: 26 pages, final version, to appear in Math. Z. Main improvements and
corrections in Section 4.