140 research outputs found

    Epigenetic Editing:On the Verge of Reprogramming Gene Expression at Will

    Get PDF
    Genome targeting has quickly developed as one of the most promising fields in science. By using programmable DNA-binding platforms and nucleases, scientists are now able to accurately edit the genome. These DNA-binding tools have recently also been applied to engineer the epigenome for gene expression modulation. Such epigenetic editing constructs have firmly demonstrated the causal role of epigenetics in instructing gene expression. Another focus of epigenome engineering is to understand the order of events of chromatin remodeling in gene expression regulation. Groundbreaking approaches in this field are beginning to yield novel insights into the function of individual chromatin marks in the context of maintaining cellular phenotype and regulating transient gene expression changes. This review focuses on recent advances in the field of epigenetic editing and highlights its promise for sustained gene expression reprogramming

    Advances of epigenetic editing

    Get PDF
    Epigenetic editing refers to the locus-specific targeting of epigenetic enzymes to rewrite the local epigenetic landscape of an endogenous genomic site, often with the aim of transcriptional reprogramming. Implementing clustered regularly interspaced short palindromic repeat-dCas9 greatly accelerated the advancement of epigenetic editing, yielding preclinical therapeutic successes using a variety of epigenetic enzymes. ,CRISPR/dCas9 Here, were review the current applications of these epigenetic editing tools in mammalians and shed light on biochemical improvements that facilitate versatile applications

    Exploiting epigenetics for the treatment of inborn errors of metabolism

    Get PDF
    Gene therapy is currently considered as the optimal treatment for inborn errors of metabolism (IEMs), as it aims to permanently compensate for the primary genetic defect. However, emerging gene editing approaches such as CRISPR-Cas9, in which the DNA of the host organism is edited at a precise location, may have outperforming therapeutic potential. Gene editing strategies aim to correct the actual genetic mutation, while circumventing issues associated with conventional compensation gene therapy. Such strategies can also be repurposed to normalize gene expression changes that occur secondary to the genetic defect. Moreover, besides the genetic causes of IEMs, it is increasingly recognized that their clinical phenotypes are associated with epigenetic changes. Because epigenetic alterations are principally reversible, this may offer new opportunities for treatment of IEM patients. Here, we present an overview of the promises of epigenetics in eventually treating IEMs. We discuss the concepts of gene and epigenetic editing, and the advantages and disadvantages of current and upcoming gene-based therapies for treatment of IEMs.</p

    The Endothelium as a Target for Anti-Atherogenic Therapy:A Focus on the Epigenetic Enzymes EZH2 and SIRT1

    Get PDF
    Endothelial cell inflammatory activation and dysfunction are key events in the pathophysiology of atherosclerosis, and are associated with an elevated risk of cardiovascular events. Yet, therapies specifically targeting the endothelium and atherosclerosis are lacking. Here, we review how endothelial behaviour affects atherogenesis and pose that the endothelium may be an efficacious cellular target for antiatherogenic therapies. We discuss the contribution of endothelial inflammatory activation and dysfunction to atherogenesis and postulate that the dysregulation of specific epigenetic enzymes, EZH2 and SIRT1, aggravate endothelial dysfunction in a pleiotropic fashion. Moreover, we propose that commercially available drugs are available to clinically explore this postulation

    The timeline of epigenetic drug discovery:from reality to dreams

    Get PDF
    The flexibility of the epigenome has generated an enticing argument to explore its reversion through pharmacological treatments as a strategy to ameliorate disease phenotypes. All three families of epigenetic proteins-readers, writers, and erasers- A re druggable targets that can be addressed through small-molecule inhibitors. At present, a few drugs targeting epigenetic enzymes as well as analogues of epigenetic modifications have been introduced into the clinic use (e.g. to treat haematological malignancies), and a wide range of epigenetic-based drugs are undergoing clinical trials. Here, we describe the timeline of epigenetic drug discovery and development beginning with the early design based solely on phenotypic observations to the state-of-the-art rational epigenetic drug discovery using validated targets. Finally, we will highlight some of the major aspects that need further research and discuss the challenges that need to be overcome to implement epigenetic drug discovery into clinical management of human disorders. To turn into reality, researchers from various disciplines (chemists, biologists, clinicians) need to work together to optimise the drug engineering, read-out assays, and clinical trial design

    Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing

    Get PDF
    Epigenetic editing is a promising approach to modulate the local chromatin environment of target genes with the ultimate goal of stable gene expression reprogramming. Epigenetic editing tools minimally consist of a DNA-binding domain and an effector domain. The CRISPR/dCas9 platform, where mutations in the nuclease domains render the Cas9 protein inactive, is widely used to guide epigenetic effectors to their intended genomic loci. Its flexible nature, simple use, and relatively low cost have revolutionized the research field of epigenetic editing. Although effective expression modulation is readily achieved, only a few studies have addressed the maintenance of the induced effects on endogenous loci. Here, we describe a detailed protocol to engineer cells that stably express the CRISPR/dCas9-effectors. The protocol involves modification of published dCas9-based plasmid vectors for easy transfer of the effector domain between the vector designed for transient transfection and the vector used for establishing cell lines stably expressing the dCas9-effector fusion protein. Transient transfection of the dCas9-effector-producing cells with sgRNA-expressing plasmids allows studying of the maintenance of epigenetic editing. Targeting various genes in different chromatin contexts and/or co-targeting multiple CRISPR/dCas9-effectors can be used to unravel rules underlying maintained gene expression reprogramming

    The potential for targeted rewriting of epigenetic marks in COPD as a new therapeutic approach

    Get PDF
    Chronic obstructive pulmonary disease (COPD) is an age and smoking related progressive, pulmonary disorder presenting with poorly reversible airflow limitation as a result of chronic bronchitis and emphysema. The prevalence, disease burden for the individual, and mortality of COPD continues to increase, whereas no effective treatment strategies are available. For many years now, a combination of bronchodilators and anti-inflammatory corticosteroids has been most widely used for therapeutic management of patients with persistent COPD. However, this approach has had disappointing results as a large number of COPD patients are corticosteroid resistant. In patients with COPD, there is emerging evidence showing aberrant expression of epigenetic marks such as DNA methylation, histone modifications and microRNAs in blood, sputum and lung tissue. Therefore, novel therapeutic approaches may exist using epigenetic therapy. This review aims to describe and summarize current knowledge of aberrant expression of epigenetic marks in COPD. In addition, tools available for restoration of epigenetic marks are described, as well as delivery mechanisms of epigenetic editors to cells. Targeting epigenetic marks might be a very promising tool for treatment and lung regeneration in COPD in the future

    Importance of Metal-Ion Exchange for the Biological Activity of Coordination Complexes of the Biomimetic Ligand N4Py

    Get PDF
    Metal coordination complexes can display interesting biological activity, as illustrated by the bleomycins (BLMs), a family of natural antibiotics that when coordinated to a redox-active metal ion, show antitumor activity. Yet, which metal ion is required for the activity in cells is still subject to debate. In this study, we described how different metal ions affect the intracellular behavior and activity of the synthetic BLM-mimic N, N-bis(2-pyridylmethyl)- N-bis(2-pyridyl)methylamine (N4Py). Our study shows that a mixture of iron(II), copper(II), and zinc(II) complexes can be generated when N4Py is added to cell cultures but that the metal ion can also be exchanged by other metal ions present in cells. Moreover, the combination of chemical data, together with the performed biological experiments, shows that the active complex causing oxidative damage to cells is the FeII-N4Py complex and not per se the metal complex that was initially added to the cell culture medium. Finally, it is proposed that the high activity observed upon the addition of the free N4Py ligand is the result of a combination of scavenging of biologically relevant metals and oxidative damage caused by the iron(II) complex
    • …
    corecore