695 research outputs found

    Climatic Factors Affecting Quantity and Quality Grade of in vivo Produced Bovine Embryos

    Get PDF
    The present study investigated the effects of climatic variables on the quality grade and quantity of in vivo produced bovine embryos. High temperature during the early embryonic development stage, one day after AI to flush, tended (P \u3c 0.10) to decrease the quality of embryos recovered. High Temperature-Humidity Index during the early antral follicular stage, 40 to 45 days prior to ovulation, tended to improve the total number of freezable and transferrable embryos recovered per flush (P \u3c 0.10). Increased wind speed at the early antral follicular phase was associated with a significant increase of the percentage of quality grade 1 embryos recovered (P \u3c 0.05). This implies that wind has a significant effect in the quality grade and quantity of in vivo produced bovine embryos that is rarely taken into consideration

    How does spirituality manifest in family caregivers of terminally ill cancer patients? A qualitative secondary analysis

    Get PDF
    OBJECTIVE Considering the risk of spiritual distress among terminally ill patients, experts long agree that spiritual care has to be an integral component of palliative care. Despite this consensus, the role of spirituality among family caregivers remains largely unexplored. We aimed to describe how spirituality manifests in the lived experience of family caregivers (FCs) in a palliative care context. METHOD As part of a secondary analysis, data derived from two qualitative primary studies on FCs' burdens and needs in the context of caring for a patient with a diagnosis of incurable cancer. Previously transcribed interviews were examined by means of a thematic analysis, transcending the focus of the primary studies to examine how spirituality arises and/or persists in the life of FCs from the time of diagnosis of incurable cancer up until bereavement. RESULTS Twenty-nine narratives were explored and all included spirituality as a relevant theme. Analysis revealed four aspects associated with the presence of spirituality among FCs' experiences: \textquotedblConnectedness,\textquotedbl \textquotedblReligious Faith,\textquotedbl \textquotedblTranscendence,\textquotedbl \textquotedblHope,\textquotedbl and a fifth overarching aspect which we named \textquotedblOngoing integration of spiritual experience.\textquotedbl Spirituality appeared as a multilayered phenomenon and was shaped individually among FCs' narratives. SIGNIFICANCE OF RESULTS In view of the results, exploring and discussing spirituality and underlying experiences in the situation as an FC seems likely to widen the perspective on FCs' problems and needs. Further research on spiritual needs among FCs of patients with incurable life-limiting cancer is deemed necessary

    Early monocyte response following local ablation in hepatocellular carcinoma

    Get PDF
    Local ablative therapies are established treatment modalities in the treatment of early- and intermediate-stage hepatocellular carcinoma (HCC). Systemic effects of local ablation on circulating immune cells may contribute to patients’ response. Depending on their activation, myeloid cells are able to trigger HCC progression as well as to support anti-tumor immunity. Certain priming of monocytes may already occur while still in the circulation. By using flow cytometry, we analyzed peripheral blood monocyte cell populations from a prospective clinical trial cohort of 21 HCC patients following interstitial brachytherapy (IBT) or radiofrequency ablation (RFA) and investigated alterations in the composition of monocyte subpopulations and monocytic myeloid-derived suppressor cells (mMDSCs) as well as receptors involved in orchestrating monocyte function. We discovered that mMDSC levels increased following both IBT and RFA in virtually all patients. Furthermore, we identified varying alterations in the level of monocyte subpopulations following radiation compared to RFA. (A) Liquid biopsy liquid biopsy of circulating monocytes in the future may provide information on the inflammatory response towards local ablation as part of an orchestrated immune response

    HER2 cancer vaccine optimization by combining Drosophila S2 insect cell manufacturing with a novel VLP-display technology

    Get PDF
    Breast cancer is a widespread oncology indication affecting more than 1.3 million people worldwide annually, 20%-30% of which are HER2 positive. HER2 is a tyrosine kinase receptor that is frequently overexpressed in several solid-tumor cancers (incl. breast, prostate, gastric, esophageal and osteosarcoma) where it denotes an aggressive phenotype, high metastatic rate, and poor prognosis. In a human context, passive HER2-targeted immunotherapy using monoclonal antibodies (mAb, e.g. Trastuzumab and Pertuzumab) has proven to be an effective treatment modality, which has dramatically improved clinical outcomes. Unfortunately, mAb therapy is very expensive and the repeated injections of high doses can be associated with severe side-effects that reduce efficacy. Vaccines are highly cost-effective, but overall progress in development of anti-cancer vaccines based on cancer-associated antigens (e.g. HER2) has been hampered by inherent immune-tolerogenic mechanisms rendering the immune system incapable of reacting against the body’s own cells/proteins (i.e. self-antigens). Consequently, many attempts to develop anti-cancer vaccines have failed in clinical trials due to insufficient immunogenicity. To circumvent this central issue, we have developed a proprietary virus-like particle (VLP)-based vaccine delivery platform. Notably, the VLP-platform is currently the only available technology to effectively facilitate multivalent “virus-like” display of large/complex vaccine antigens. This is key to overcome immune-tolerance and enable induction of therapeutically potent antibody responses directed against cancer-associated self-antigens. In this talk I will discuss the non-viral Drosophila S2 insect cell production system and how it was applied to the production of hHer2/neu antigen, including using advanced production methods such as perfusion for clinical material manufacture. Furthermore, I will present our data from a transgenic mouse model for spontaneous breast cancer development, where high-density display of the HER2 extracellular domain on the surface of virus-like particles (VLPs) enables induction of therapeutically potent anti-HER2 responses. Split-protein tag/catcher conjugation was used to facilitate directional covalent attachment of HER2 to the surface of icosahedral bacteriophage-derived VLPs, thereby harnessing the VLP platform to effectively overcome B-cell tolerance. Vaccine efficacy was demonstrated both in prevention and therapy of mammary carcinomas in HER2 transgenic mice. Thus, the HER2-VLP vaccine shows promise as a new strategy for treatment of HER2-positive cancer. The modular VLP system may also represent an effective tool for development of self-antigen based vaccines against other non-communicable diseases

    Transplantation, gene therapy and intestinal pathology in MNGIE patients and mice

    Get PDF
    Background: Gastrointestinal complications are the main cause of death in patients with mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Available treatments often restore biochemical homeostasis, but fail to cure gastrointestinal symptoms. Methods: We evaluated the small intestine neuromuscular pathology of an untreated MNGIE patient and two recipients of hematopoietic stem cells, focusing on enteric neurons and glia. Additionally, we evaluated the intestinal neuromuscular pathology in a mouse model of MNGIE treated with hematopoietic stem cell gene therapy. Quantification of muscle wall thickness and ganglion cell density was performed blind to the genotype with ImageJ. Significance of differences between groups was determined by two-tailed Mann-Whitney U test (P < 0.05). Results: Our data confirm that MNGIE presents with muscle atrophy and loss of Cajal cells and CD117/c-kit immunoreactivity in the small intestine. We also show that hematopoietic stem cell transplantation does not benefit human intestinal pathology at least on short-term. Conclusions: We suggest that hematopoietic stem cell transplantation may be insufficient to restore intestinal neuropathology, especially at later stages of MNGIE. As interstitial Cajal cells and their networks play a key role in development of gastrointestinal dysmotility, alternative therapeutic approaches taking absence of these cells into account could be required

    A Rapid, Highly Sensitive and Open-Access SARS-CoV-2 Detection Assay for Laboratory and Home Testing

    Get PDF
    RT-qPCR-based diagnostic tests play important roles in combating virus-caused pandemics such as Covid-19. However, their dependence on sophisticated equipment and the associated costs often limits their widespread use. Loop-mediated isothermal amplification after reverse transcription (RT-LAMP) is an alternative nucleic acid detection method that overcomes these limitations. Here, we present a rapid, robust, and sensitive RT-LAMP-based SARS-CoV-2 detection assay. Our 40-min procedure bypasses the RNA isolation step, is insensitive to carryover contamination, and uses a colorimetric readout that enables robust SARS-CoV-2 detection from various sample types. Based on this assay, we have increased sensitivity and scalability by adding a nucleic acid enrichment step (Bead-LAMP), developed a version for home testing (HomeDip-LAMP), and identified open-source RT-LAMP enzymes that can be produced in any molecular biology laboratory. On a dedicated website, rtlamp.org (DOI: 10.5281/zenodo.6033689), we provide detailed protocols and videos. Our optimized, general-purpose RT-LAMP assay is an important step toward population-scale SARS-CoV-2 testing.MK was supported by the Vienna Science and Technology Fund (WWTF) through project COV20-031 (to JZ) and a Cambridge Trust LMB Cambridge Scholarship. Research in the AP lab is supported by the Austrian Science Fund (START Projekt Y 1031-B28, SFB “RNA-Deco” F 80) and EMBO-YIP; research in the JB lab is supported by the European Research Council (ERC- 2015-CoG - 682181). The IMP receives generous institutional funding from Boehringer Ingelheim and the Austrian Research Promotion Agency (Headquarter grant FFG-852936); IMBA is generously supported by the Austrian Academy of Sciences. Work in the LM-A laboratory is supported by grant PID2019- 104176RB-I00/AEI/10.13039/501100011033 of the Spanish Ministry of Science and Innovation, and an institutional grant of the Fundación Ramón Areces.Peer reviewe

    A community resource for paired genomic and metabolomic data mining

    Get PDF
    Genomics and metabolomics are widely used to explore specialized metabolite diversity. The Paired Omics Data Platform is a community initiative to systematically document links between metabolome and (meta)genome data, aiding identification of natural product biosynthetic origins and metabolite structures.Peer reviewe

    BLOOM: A 176B-Parameter Open-Access Multilingual Language Model

    Full text link
    Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License
    • …
    corecore