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Abstract

Background: Gastrointestinal complications are the main cause of death in patients with mitochondrial
neurogastrointestinal encephalomyopathy (MNGIE). Available treatments often restore biochemical homeostasis, but
fail to cure gastrointestinal symptoms.

Methods: We evaluated the small intestine neuromuscular pathology of an untreated MNGIE patient and two
recipients of hematopoietic stem cells, focusing on enteric neurons and glia. Additionally, we evaluated the intestinal
neuromuscular pathology in a mouse model of MNGIE treated with hematopoietic stem cell gene therapy.
Quantification of muscle wall thickness and ganglion cell density was performed blind to the genotype with ImageJ.
Significance of differences between groups was determined by two-tailed Mann-Whitney U test (P < 0.05).

Results: Our data confirm that MNGIE presents with muscle atrophy and loss of Cajal cells and CD117/c-kit
immunoreactivity in the small intestine. We also show that hematopoietic stem cell transplantation does not benefit
human intestinal pathology at least on short-term.

Conclusions: We suggest that hematopoietic stem cell transplantation may be insufficient to restore intestinal
neuropathology, especially at later stages of MNGIE. As interstitial Cajal cells and their networks play a key role in
development of gastrointestinal dysmotility, alternative therapeutic approaches taking absence of these cells into
account could be required.
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Background
Mitochondrial neurogastrointestinal encephalomyopathy
(MNGIE) is a rare inherited metabolic disorder caused
by loss-of-function mutations in the nuclear gene TYMP
leading to thymidine (Thd) and deoxyuridine (d-Urd)
accumulation [1]. Alongside classic neurological signs
(external ophtalmoplegia, leukoencephalopathy and sen-
sorimotor peripheral neuropathy), chronic intestinal
pseudo-obstruction (CIPO) is reported in almost all
MNGIE patients and occurs at onset in 45–67% of cases
[2, 3]. Other gastrointestinal symptoms include early sa-
tiety, nausea, dysphagia, post-prandial emesis, abdominal
pain and/or distention and diarrhea [4].

Allogeneic hematopoietic stem cell transplantation
(HSCT) corrects the biochemical metabolic imbalance
as donor-derived leucocytes and platelets are rich in thy-
midine phosphorylase [4]. It is effective to relieve CIPO
in few reported MNGIE cases [5] although malnutrition
often persists and most cases rely on nutritional support
[6]. Neurogenic and myogenic changes and alterations of
the interstitial Cajal cells, the gut pacemakers, were re-
ported in MNGIE patients [7–10]. Restoration of gastro-
intestinal integrity by available treatments however has
not yet been addressed. Also, whether small intestine
pathology is recapitulated in the mouse model of
MNGIE is not known [11, 12]. In this study, we also
evaluated the effects of treatment on small intestinal
pathology of MNGIE patients and mice.* Correspondence: m.bugiani@vumc.nl
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Methods
MNGIE patients and controls
Table 1 reports the demographic data of three MNGIE pa-
tients and three controls. Patients were diagnosed based on
clinical, biochemical, and molecular features [1]. One pa-
tient was untreated, two received HSCT. Written informed
consent was obtained for all subjects. Human control tissue
was obtained from surgical resections and employed ac-
cording to the Dutch law where they can be used for sec-
ondary use when no objection has been received. This is
also valid abroad, because the country of origin is determin-
ant for the rules and regulations for secondary use.

MNGIE mice
Tymp−/-Upp1−/− (KO) and Tymp+/+Upp1+/+ wild type
(WT) mice [11] were bred in filter top cages and fed ad
libitum with autoclaved water and irradiated chow. Dur-
ing the course of experiments, mice were monitored
carefully for any signs of discomfort. Animal experi-
ments were approved by the ethical committee of the
Erasmus University Medical Center, Rotterdam, in ac-
cordance with Dutch legislation. pRRL.PGK.TYMP.b-
PRE4*.SIN self-inactivating lentiviral transfer plasmid
containing the human PGK promoter driving TYMP se-
quence [13], and the third-generation [14] packaging
and envelop plasmids were used to generate LV-PGK-TP
vector particles, by calcium-phosphate precipitation of
HEK293T cells [15]. Titration was performed on HeLa
cells and titers determined by quantitative polymerase
chain reaction (qPCR). Donor KO male bone marrow
lineage-depleted (Lin-) cells (BD Biosciences) were trans-
duced overnight with the lentiviral vector at a multiplicity
of infection 10 in serum-free modified Dulbecco’s medium
with supplements, [16] conditioned with murine stem cell
factor, human Flt3-L, and murine thrombopoietin. Five to
10-week-old recipient KO female mice received 6Gy
total body irradiation 24 h prior to tail vein injection of
0.5 × 106 Lin-transduced cells. The experiments

included two untreated control groups; Tymp−/
-Upp1−/− (KO) and Tymp+/+Upp1+/+ wild type (WT)
mice and one Tymp−/-Upp1−/− treatment group
(PGK-TP). Tymp−/-Upp1−/− mice were randomly allo-
cated to become either a control untreated mice (KO) or
to receive the treatment (PGK-TP). The primary experi-
mental outcomes assessed include: nucleoside levels in
urine samples, molecular chimerism and vector copy per
cell, and pathological evaluation of the intestine.
Bone marrow genomic DNA (Bioké, Leiden, The

Netherlands) was used as template for qPCR using
primers and SYBR Green PCR master mix (Applied Bio-
systems, Foster City, CA; Eurogentec, Maastricht, The
Netherlands). PCR reactions were carried out in the
ABI7900, Taqman machine, and analysis performed with
SDS2.2.2 software (Applied Biosystems). The Cycle
threshold values were compared against a standard
curve obtained from mouse 3T3 to calculate average
vector copy per cell, or from male mice bone marrow to
calculate Y chromosome chimerism.
High performance liquid chromatography (Shimadzu,

LC20 series with a binary pump and Photodiode array
detector) [17] equipped with an Alltima C18 5 μ,
250 mm × 4.6 mm column and Alltima C18 5 μ guard
column was used to measure urinary Thd and d-Urd.

Pathological analysis
Mice were euthanized by inhalation of a 5% CO2 / 95% O2

followed by 100% CO2 for 4 min, and transcardially per-
fused with PBS to remove blood. Human and mouse
formalin-fixed paraffin-embedded 5-μm-thick small intes-
tine tissue sections were routinely stained for
Hematoxylin-Eosin and Phosphotungstic acid-hematoxylin
and immunostained as described [18] against smooth
muscle actin (SMA, Dako, 1:200), CD117/c-kit (Dako,
1:50), calretinin (Dako, 1:200), NeuN (Millipore, 1:100),
CD3 (Dako, 1:250), CD8 (Dako, 1:50) and glial fibrillary
acidic protein (GFAP, Dako, 1:300). Immunoreactivity was

Table 1 Clinical and molecular data of MNGIE patients and controls

Patient MNGIE-1 MNGIE-2[22] MNGIE-3 Control-1 Control-2 Control-3

Age of onset 18 y 23 y 10 y NA NA NA

GI symptoms Diarrhea, vomiting, weight loss,
abdominal pain, liver steatosis

Diarrhea, weight loss,
liver steatosis

Diarrhea, weight loss,
abdominal pain

NA NA NA

Extra-GI
symptoms

Ptosis, peripheral neuropathy,
neurogenic bladder, leukoencephalopathy,
lactic acidosis, hypertriglyceridemia

External ophtalmoplegia,
peripheral neuropathy,
leukoencephalopathy

Retinopathy,
peripheral neuropathy,
leukoencephalopathy

NA NA NA

Diagnosis TP deficiency Urinary d-Urd, c.866A > C in TYMP c.866A > C in TYMP Pancreatitis IOPN GIST

Treatment of
MNGIE (age)

None Allogeneic HSCT (34 y) Allogeneic HSCT (17 y) – – –

Follow-up Alive (6 y) Multi-organ failure;
died 18 days after
treatment

GVHD, sepsis;
died 6 months
after treatment

NA NA NA

GI gastrointestinal. NA not available, TP thymidine phosphorylase enzyme, d-Urd deoxyuridine, TYMP thymidine phosphorylase IOPN intra-ductal
oncocytic papillary neoplasm, GIST gastrointestinal stromal tumor, HSCT hematopoietic stem cell transplantation, GVHD graft-versus-host disease
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detected using 3,3'-Diaminobenzidin or Liquid Permanent
Red as chromogen. Pictures were taken with a Leica
DM3000 microscope. Muscle thickness was measured on
transversally cut intestinal sections (N = 40 for mice, N ≥
25 for humans). Quantification of muscle wall thickness
and ganglion cell density was performed blind to the geno-
type with ImageJ.

Statistical analysis
Data were analyzed with Graph Pad-Prism5 (version
5.03). Significance of differences between groups was de-
termined by two-tailed Mann-Whitney U test (P < 0.05).

Results
Small intestine pathology in MNGIE patients
Microscopic analysis revealed a preserved layer composition
of the small intestine in all MNGIE patients (Fig. 1a, b) with
no villous atrophy or significant inflammation. In MNGIE
patients, however, the external layer of the tunica muscularis

propria was fibrotic and thinner than in controls (Fig. 1c-e),
suggesting muscle atrophy. The submucosal plexus
appeared normal. In the myenteric plexus, no significant loss
or morphologic abnormalities of ganglion cells (identified
by NeuN and calretinin immunoreactivity, Fig. 1f-h) and
enteric glial cells (identified by GFAP immunoreactivity,
Fig. 1k, l) were observed. Cajal cells, however, identified by
CD117/c-kit immunoreactivity, were completely lost in all
MNGIE patients (Fig. 1i, j).

Small intestine pathology in MNGIE mice
We investigated small intestine histopathology in MNGIE
mice using 2 (young) and 12-month-old animals (old) to
also check for signs of progression. Hematoxylin-Eosin
staining revealed significant atrophy of the tunica muscu-
laris propria and loss of myenteric ganglion cells in old
KO compared to young Tymp−/-Upp1−/− and old WT
mice (Fig. 2a-d). Unfortunately, CD117/c-kit immuno-
staining was unsuccessful.

Fig. 1 Small intestinal histopathology in MNGIE patients. a, b Hematoxylin-Eosin (H&E) stains of the small intestine of control subjects (a) and MNGIE
patients (b) show normally layered organization of the wall in both groups (M: tunica mucosa; SM: tunica submucosa; MP: tunica muscularis propria; S:
tunica serosa). c, d Compared to controls (c), phosphotungstic acid-hematoxylin (PTAH) stains of MNGIE small intestines (d) show thinning of the
external layer of the tunica muscularis propria (blue, arrows). e Quantification demonstrates muscle wall atrophy in the three MNGIE patients
compared to two controls. One control was omitted because the tunica muscularis was incompletely present. f, g Immunostain against calretinin
shows presence of ganglion cells in the submucosal Meissner plexus of controls (f) and MNGIE patients (g). h Quantification of myenteric ganglion
cells shows similar cell density in MNGIE patients and controls when identifying cells with calretinin (p = 0.99) and NeuN (p = 0.63, not shown). i, j
Immunostain against CD117 shows normal presence of interstitial Cajal cells around grouped myenteric ganglion cells in controls (i), whereas Cajal
cells are completely depleted in MNGIE patients (j). Small immunopositive cells in J are mast cells. (k, l) Immunostain against the glial fibrillary acidic
protein (GFAP) shows normal immunoreactivity in myenteric ganglion and enteric glia cells in MNGIE (l) as in controls (k). In both graphs bars denote
the median. Original magnifications (a, b): 12.5x; (c, d): 25x; (i, j): 400x; (k, l): 200x. ***P < 0.001
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We then assessed the effects of treatment on the
MNGIE phenotype (Fig. 2). Following hematopoietic stem
cell gene therapy (HCSGT), vector copies number per cell
and engraftment levels (Fig. 2e) and urinary nucleosides
concentrations (Fig. 2f) indicated efficient hematological
reconstitution and biochemical correction. Histopathology
showed preserved thickness of the tunica muscularis pro-
pria in old treated mice compared to Tymp−/-Upp1−/−mice
(Fig. 2g, h); however, no significant changes were observed
in the number of myenteric ganglion cells (Fig. 2i).

Discussion
MNGIE is associated with gastrointestinal symptoms, in-
cluding CIPO [2, 3]. Limited understanding of the
pathological and molecular mechanisms underlying
gastrointestinal complications in MNGIE stems from
limited availability of patient tissue and models [11] that
accurately recapitulate the human gastrointestinal path-
ology. Our study confirms the morphological changes in
human MNGIE small intestine, including atrophy and fi-
brosis of the external layer of the tunica muscularis pro-
pria [8]. The selective involvement of this layer has been
attributed to physiologically very low mitochondrial
DNA amounts making this compartment selectively vul-
nerable to disease [8]. Muscle wall atrophy was more
pronounced in transplanted patients, possibly due to
additional HSCT-related stress. We also found complete
loss of interstitial Cajal cells and networks in patient’s
small intestine. Cajal cells play roles in orchestration of
normal gastrointestinal motility and in dysmotility disor-
ders [19]. One study previously described similar find-
ings in a MNGIE patient [9]. Altogether, these findings
suggest that Cajal cell loss is a cellular substrate of hu-
man MNGIE gastrointestinal pathology.

Fig. 2 Small intestinal histopathology in MNGIE mice. a, b
Hematoxylin-Eosin (H&E) stains of the small intestine of young
(2-month-old) control mice (a) and age-matched Tymp−/-Upp1−/−

mutants (b) show normally layered organization of the intestinal wall
in both groups. c, d H&E stains of the small intestine show normal
thickness of the tunica muscularis propria in old (12-month-old)
control mice (c), whereas in age-matched Tymp−/-Upp1−/− mutants (d)
the muscle wall is atrophic. e Bone marrow cell chimerism and vector
copy number in recipients of 0.5 × 106 Lin- cells transduced by LV-PGK-
TP (MOI10) (n = 3 mice). f Quantification of Thd and d-Urd in urine of
untreated controls and age-matched recipients 6 and 11 months after
transplantation (n = 3 mice). g H&E stain of the small intestine shows
that atrophy of the tunica muscularis propria is prevented in old
(12-month-old) Tymp−/-Upp1−/− mice 10 months after treatment. h
Quantification confirms atrophy of the muscle wall in 12-month-old
Tymp−/-Upp1−/− mice compared to wild-type age-matched controls.
Treatment is associated with normal thickness of the tunica muscularis
propria. i Quantification of the number of myenteric ganglion cell
groups per tissue section shows progressive loss of ganglion cells in
Tymp−/-Upp1−/− mice, without effect of the treatment. N = 2–4 mice/
group; in all graphs lines represent the median; *P < 0.05, **P < 0.01,
***P < 0.001. Original magnification (a-d and g): 200x
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We used Tymp−/-Upp1−/− mice, a model of MNGIE, to
investigate whether it recapitulates the human gastro-
intestinal pathology. In mutant mice, histopathology re-
vealed atrophy of the tunica muscularis propria as in
MNGIE patients and, in addition, loss of myenteric gan-
glion cells. These features were more prominent in old
Tymp−/-Upp1−/−compared to young animals. In Tymp−/
-Upp1−/− mice, we did not see presence of Cajal cell on
routine Hematoxylin-Eosin stained sections. Unfortu-
nately, CD117/c-kit immunostaining of mouse small in-
testine was unsuccessful, so that we cannot conclude on
Cajal cells absence in Tymp−/-Upp1−/− mice. However,
taking our patient and mouse data together, we can sup-
pose a sequence of pathological events leading to
MNGIE small intestinal disease, including loss of inter-
stitial Cajal cells and their networks followed by atrophy
of the tunica muscularis propria and eventually loss of
myenteric ganglion cells [9]. The observed loss of my-
enteric ganglion cells in the mice, but not in patient’s
small intestine may be attributed to inter-species differ-
ences and the construct of the MNGIE mouse model be-
ing knock-out for both disease-related enzymes. Our
study describes, for the first time, the small intestinal
pathology in MNGIE patients treated with HSCT.
Although the study is limited by the small patient num-
ber and short time lapse between treatment and demise,
HSCT did not significantly change the trend to intestinal
muscle wall atrophy and complete loss of Cajal cells in
treated compared to the untreated patient. This suggests
that MNGIE small intestinal pathology may not be re-
covered upon HSCT on the short term follow-up, which
could explain the repeatedly reported insufficient im-
provement of gastrointestinal symptoms in MNGIE pa-
tients that do not survive short after treatment [5].
We also report for the first time that enteric glial cell

morphology and density are not affected in MNGIE.
Functions of enteric glial cells are currently being unrav-
eled, and include autonomous regulation of several gastro-
intestinal functions, such as exocrine and endocrine
secretions, motility, blood flow, and immune/inflamma-
tory processes [20]. We were prompted to investigate glial
cells in MNGIE as their central nervous system cellular
counterparts, the astrocytes, are primarily affected by
MNGIE and their pathology is modified by HSCGT [21].
The HSCT procedure carries a high mortality rate [5].

Recently, HSCGT has been explored in Tymp−/-Upp1−/−

mice, providing higher enzymatic levels compared to
HSCT and abating the risk of graft-versus-host disease
[12]. Due to intrinsic limitations of the mouse model, i.e.
lack of an apparent clinical phenotype, only biochemical
correction was shown after HSCGT. Moreover, the patho-
logical changes in the intestine of Tymp−/-Upp1−/− mice
were never evaluated [12]. Here, we show that the trans-
planted gene modified cells engrafted well in recipient

mice, leading to clearance of systemic nucleosides. The
observed atrophy of the tunica muscularis propria was
prevented upon HSCGT, whereas the degree of myenteric
ganglion cell loss remained unchanged. Similarly as for
MNGIE patients, recovery of ganglion cells may take lon-
ger than our follow-up of the mice. Alternatively, the pos-
sibility that MNGIE permanently affects ganglion cells,
including their precursors, cannot be excluded.

Conslusions
Our data suggest that allogeneic HSCT may be insuffi-
cient to correct gastrointestinal pathology completely,
especially at later stages of MNGIE. As interstitial Cajal
cells and their networks play a key role in development
of gastrointestinal dysmotility, alternative therapeutic ap-
proaches taking absence of these cells into account
could be required.
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