26 research outputs found

    Small RNAs in eucaryotes: new clues for amplifying microRNA benefits

    Get PDF
    miRNAs, the smallest nucleotide molecules able to regulate gene expression at post transcriptional level, are found in both animals and plants being involved in fundamental processes for growth and development of living organisms. The number of miRNAs has been hypothesized to increase when some organisms specialized the process of mastication and grinding of food. Further to the vertical transmission, miRNAs can undergo horizontal transmission among different species, in particular between plants and animals. In the last years, an increasing number of studies reported that miRNA passage occurs through feeding, and that in animals, plant miRNAs can survive the gastro intestinal digestion and transferred by blood into host cells, where they can exert their functions modulating gene expression. The present review reports studies on miRNAs during evolution, with particular focus on biogenesis and mechanisms regulating their stability in plants and animals. The different biogenesis and post biogenesis modifications allow to discriminate miRNAs of plant origin from those of animal origin, and make it possible to better clarify the controversial question on whether a possible cross-kingdom miRNA transfer through food does exist. The majority of human medicines and supplements derive from plants and a regular consumption of plant food is suggested for their beneficial effects in the prevention of metabolic diseases, cancers, and dietary related disorders. So far, these beneficial effects have been generally attributed to the content of secondary metabolites, whereas mechanisms regarding other components remain unclear. Therefore, in light of the above reported studies miRNAs could result another component for the medical properties of plants. miRNAs have been mainly studied in mammals characterizing their sequences and molecular targets as available in public databases. The herein presented studies provide evidences that miRNA situation is much more complex than the static situation reported in databases. Indeed, miRNAs may have redundant activities, variable sequences, different methods of biogenesis, and may be differently influenced by external and environmental factors. In-depth knowledge of mechanisms of synthesis, regulation and transfer of plant miRNAs to other species can open new frontiers in the therapy of many human diseases, including cancer

    Global profiling of viral and cellular non-coding RNAs in Epstein-Barr virus-induced lymphoblastoid cell lines and released exosome cargos.

    Get PDF
    Abstract The human EBV-transformed lymphoblastoid cell line (LCL), obtained by infecting peripheral blood monocular cells with Epstein–Barr Virus, has been extensively used for human genetic, pharmacogenomic, and immunologic studies. Recently, the role of exosomes has also been indicated as crucial in the crosstalk between EBV and the host microenvironment. Because the role that the LCL and LCL exosomal cargo might play in maintaining persistent infection, and since little is known regarding the non-coding RNAs of LCL, the aim of our work was the comprehensive characterization of this class of RNA, cellular and viral miRNAs, and cellular lncRNAs, in LCL compared with PBMC derived from the same donors. In this study, we have demonstrated, for the first time, that all the viral miRNAs expressed by LCL are also packaged in the exosomes, and we found that two miRNAs, ebv-miR-BART3 and ebv-miR-BHRF1-1, are more abundant in the exosomes, suggesting a microvescicular viral microRNA transfer. In addition, lncRNA profiling revealed that LCLs were enriched in lncRNA H19 and H19 antisense, and released these through exosomes, suggesting a leading role in the regulation of the tumor microenvironment

    IBWS: IST Bioinformatics Web Services

    Get PDF
    The Bioinformatics group at the National Cancer Research Institute (IST) of Genoa has been involved since many years in the development and maintenance of biomedical information systems. Among them, the Common Access to Biological Resources and Information network services offer access to more than 130 000 biological resources, like strains of micro-organisms and human and animal cell lines, included in 29 collections from some of the most known European Biological Resource Centers. An Sequence Retrieval System (SRS) implementation of the TP53 Mutation Database of the International Agency for Research on Cancer (Lyon) was made available in order to improve interoperability of this data with other molecular biology databases. ‘SRS by WS (SWS)’, a system for retrieving information on public SRS sites and for directly querying them, was also implemented. In order to make this information available through application programming interfaces, we implemented a suite of free web services (WS), called the ‘IST Bioinformatics Web Services (IBWS)’. A support web site, including a description of the system, a list of available WS together with help pages, links to corresponding WSDLs and forms for testing services, is available at http://bioinformatics.istge.it/ibws/. WSDL definitions can also be retrieved directly at http://bioinformatics.istge.it:8080/axis/services

    Efficacy of safety catheter devices in the prevention of occupational needlestick injuries: applied research in Liguria Region (Italy)

    Get PDF
    Health care workers who use or may be exposed to needles are at increased risk of needlestick injuries which can lead to serious infections with bloodborne pathogens. These injuries can be avoided by eliminating the unnecessary use of needles, using safety devices. The present study was aimed at evaluating the impact of a safety-engineered device, with passive fully automatic needlestick protection, on the reduction of needlestick injuries among health care workers. The setting of the study was a network of five public health care institutions situated in a Northern Italian Region. Data about the type of device, the number of employees and the amount of catheter devices used per year were collected through regular meetings with health care workers over a period of five years.The most remarkable result of this study was represented by the huge risk reduction estimated for safety devices. Indeed, the risk of needlestick injuries due to conventional devices was found to be 25 fold higher than that observed for safety devices. However, it is noteworthy that a discernible part of this excess can be explained by the different background amount of devices used. Moreover, the descriptive analysis suggested that individuals with a poor/moderate training level showed a lower risk, albeit not statistically significant, than those with a good/high training.In conclusion, there is a convincing evidence of a causal connection between the introduction of safety devices and reduction in the occurrence of needlestick injuries. This consideration pushes to introduce safety devices into daily clinical practice

    Activity of Mannich bases of 7-hydroxycoumarin against Flaviviridae

    Get PDF
    Abstract-Some Mannich bases of 7-hydroxycoumarin (2) and their simple derivatives (3 and 4) were prepared and tested against viruses containing single-stranded, positive-sense RNA genomes (ssRNA + ). This study was directed toward Flaviviridae and, in particular, HCV surrogate viruses (BVDV, YFV). The 7-hydroxy derivatives 2 were generally devoid of activity, but when position 7 was propylated, the resulting 7-propyloxy derivatives 3 were in some cases endowed with an interesting activity against BVDV. The formation of 7-benzoyl derivatives 4 gave compounds generally lacking in activity against Flaviviridae, whereas the appearance of activity against RSV has been observed. Also some unsymmetrical methylene derivatives 5-7 (namely coumarins bridged to chromones or indoles) were found moderately active in antiviral tests. Derivatives 3 were submitted to a molecular modeling study using DNA polymerase of HCV as a target. The good correlation between calculated molecular modeling IC 50 and experimental EC 50 indicates that DNA polymerase is potentially involved in the inhibition of surrogate HCV viruses

    Gli1/DNA interaction is a druggable target for Hedgehog-dependent tumors

    Get PDF
    Hedgehog signaling is essential for tissue development and stemness, and its deregulation has been observed in many tumors. Aberrant activation of Hedgehog signaling is the result of genetic mutations of pathway components or other Smo-dependent or independent mechanisms, all triggering the downstream effector Gli1. For this reason, understanding the poorly elucidated mechanism of Gli1-mediated transcription allows to identify novel molecules blocking the pathway at a downstream level, representing a critical goal in tumor biology. Here, we clarify the structural requirements of the pathway effector Gli1 for binding to DNA and identify Glabrescione B as the first small molecule binding to Gli1 zinc finger and impairing Gli1 activity by interfering with its interaction with DNA. Remarkably, as a consequence of its robust inhibitory effect on Gli1 activity, Glabrescione B inhibited the growth of Hedgehog-dependent tumor cells in vitro and in vivo as well as the self-renewal ability and clonogenicity of tumor-derived stem cells. The identification of the structural requirements of Gli1/DNA interaction highlights their relevance for pharmacologic interference of Gli signaling

    Prolonged higher dose methylprednisolone vs. conventional dexamethasone in COVID-19 pneumonia: a randomised controlled trial (MEDEAS)

    Get PDF
    Dysregulated systemic inflammation is the primary driver of mortality in severe COVID-19 pneumonia. Current guidelines favor a 7-10-day course of any glucocorticoid equivalent to dexamethasone 6 mg·day-1. A comparative RCT with a higher dose and a longer duration of intervention was lacking

    Disease-Modifying Therapies and Coronavirus Disease 2019 Severity in Multiple Sclerosis

    Get PDF
    Objective: This study was undertaken to assess the impact of immunosuppressive and immunomodulatory therapies on the severity of coronavirus disease 2019 (COVID-19) in people with multiple sclerosis (PwMS). Methods: We retrospectively collected data of PwMS with suspected or confirmed COVID-19. All the patients had complete follow-up to death or recovery. Severe COVID-19 was defined by a 3-level variable: mild disease not requiring hospitalization versus pneumonia or hospitalization versus intensive care unit (ICU) admission or death. We evaluated baseline characteristics and MS therapies associated with severe COVID-19 by multivariate and propensity score (PS)-weighted ordinal logistic models. Sensitivity analyses were run to confirm the results. Results: Of 844 PwMS with suspected (n = 565) or confirmed (n = 279) COVID-19, 13 (1.54%) died; 11 of them were in a progressive MS phase, and 8 were without any therapy. Thirty-eight (4.5%) were admitted to an ICU; 99 (11.7%) had radiologically documented pneumonia; 96 (11.4%) were hospitalized. After adjusting for region, age, sex, progressive MS course, Expanded Disability Status Scale, disease duration, body mass index, comorbidities, and recent methylprednisolone use, therapy with an anti-CD20 agent (ocrelizumab or rituximab) was significantly associated (odds ratio [OR] = 2.37, 95% confidence interval [CI] = 1.18-4.74, p = 0.015) with increased risk of severe COVID-19. Recent use (<1 month) of methylprednisolone was also associated with a worse outcome (OR = 5.24, 95% CI = 2.20-12.53, p = 0.001). Results were confirmed by the PS-weighted analysis and by all the sensitivity analyses. Interpretation: This study showed an acceptable level of safety of therapies with a broad array of mechanisms of action. However, some specific elements of risk emerged. These will need to be considered while the COVID-19 pandemic persists

    Methyleugenol in Ocimum basilicum

    No full text
    corecore