45 research outputs found

    Sulfonamides incorporating fluorine and 1,3,5-triazine moieties are effective inhibitors of three β-class carbonic anhydrases from Mycobacterium tuberculosis.

    Get PDF
    A new series of fluorine containing 1,3,5-triazinyl sulfonamide derivatives obtained from cyanuric fluoride, sulfanilamide/4-aminoethylbenzenesulfonamide followed and incorporating also amin0, amino alcohol and amino acid moieties have been investigated as inhibitors of three β-carbonic anhydrases (CAs, EC 4.2.1.1) from the bacterial pathogen Mycobacterium tuberculosis, mtCA1 (Rv1284), mtCA 2 (Rv3588c) and mtCA 3 (Rv3273). All three enzymes were efficiently inhibited by these sulfonamides with KI values in the nanomolar or submicromolar range, depending on the substitution of one or both fluorine atoms at the 1,3,5-triazine ring. As some of these enzymes are crucial for the life cycle of this bacterium, the class of β-CA inhibitors reported in this study may lead to antimycobacterial agents with a different mechanism of action compared to the clinically used such drugs for which the pathogen developed extensive drug resistance

    7-Aryl-triazolyl-substituted sulfocoumarins are potent, selective inhibitors of the tumor-associated carbonic anhydrase IX and XII.

    Get PDF
    Sulfocoumarins behave as interesting inhibitors of the metalloenzyme carbonic anhydrase (CA, EC 4.2.1.1). Here, we report a new series of 7-substituted derivatives which were obtained by the click chemistry approach from 7-propargyloxy-sulfocoumarin and aryl azides incorporating halogens, hydroxy, methoxy and carboxyl moieties in their molecules. The new compounds were screened for the inhibition on four physiologically relevant human CA (hCA) isoforms, the cytosolic hCA I and II and the transmembrane tumor-associated hCA IX and XII. The new compounds did not inhibit the cytosolic isoforms but were low nanomolar inhibitors of the tumor-associated ones hCA IX and XII

    Synthesis and carbonic anhydrase I, II, IX and XII inhibitory activity of sulfamates incorporating piperazinyl-ureido moieties

    Get PDF
    A series of sulfamates were synthesized using as lead compound SLC-0111, a sulfonamide carbonic anhydrase (CA, EC 4.2.1.1) inhibitor in Phase I clinical trials. The new derivatives incorporated ureido moieties as spacers between the benzene sulfamate fragment which binds the zinc ion from the active site, and the tail of the inhibitor, but the urea moieties were part of a substituted piperazine ring system. The derivatives (and some of their phenol precursors) were tested for the inhibition of the cytosolic, hCA I and II (off target isoforms) and the trans-membrane, tumor-associated hCA IX and XII enzymes (anticancer drug targets). Generally hCA I was not effectively inhibited, whereas many low nanomolar inhibitors were evidenced against hCA II (KIs in the range of 1.0–94.4 nM), IX (KIs in the range of 0.91–36.9 nM), and XII (KIs in the range of 1.0–84.5 nM). The best substitution fragments at the piperazine ring included the following moieties: 3-methylphenyl, 2,3-dimethylphenyl, 4-methoxyphenyl, 6-arylpyrimidine-2-yl

    Open saccharin-based secondary sulfonamides as potent and selective inhibitors of cancer-related carbonic anhydrase IX and XII isoforms

    Get PDF
    A large number of novel secondary sulfonamides based on the open saccharin scaffold were synthesized and evaluated as selective inhibitors of four different isoforms of human carbonic anhydrase (hCA I, II, IX and XII, EC 4.2.1.1). They were obtained by reductive ring opening of the newly synthesized N-alkylated saccharin derivatives and were shown to be inactive against the two cytosolic off-target hCA I and II (Kis &gt; 10 µM). Interestingly, these compounds inhibited hCA IX in the low nanomolar range with Kis ranging between 20 and 298 nM and were extremely potent inhibitors of hCA XII isoenzyme (Kis ranging between 4.3 and 432 nM). Since hCA IX and XII are the cancer-related isoforms recently validated as drug targets, these results represent an important goal in the development of new anticancer candidates. Finally, a computational approach has been performed to better correlate the biological data to the binding mode of these inhibitors.</p

    4-Arylbenzenesulfonamides as Human Carbonic Anhydrase Inhibitors (hCAIs): Synthesis by Pd Nanocatalyst-Mediated Suzuki–Miyaura Reaction, Enzyme Inhibition, and X-ray Crystallographic Studies

    Get PDF
    Benzenesulfonamides bearing various substituted (hetero)aryl rings in the para-position were prepared by palladium nanoparticle-catalyzed Suzuki–Miyaura cross-coupling reactions and evaluated as human carbonic anhydrase (hCA, EC 4.2.1.1) inhibitors against isoforms hCA I, II, IX, and XII. Most of the prepared sulfonamides showed low inhibition against hCA I isoform, whereas the other cytosolic isoenzyme, hCA II, was strongly affected. The major part of these new derivatives acted as potent inhibitors of the tumor-associated isoform hCA XII. An opposite trend was observed for phenyl, naphthyl, and various heteroaryl substituted benzenesulfonamides which displayed subnanomolar hCA IX inhibition while poorly inhibiting the other tumor-associated isoform hCA XII. The inhibition potency and influence of the partially restricted aryl–aryl bond rotation on the activity/selectivity were rationalized by means of X-ray crystallography of the adducts of hCA II with several 4-arylbenzenesulfonamides

    Synthesis 4-[2-(2-mercapto-4-oxo-4H-quinazolin-3-yl)-ethyl]-benzenesulfonamides with subnanomolar carbonic anhydrase II and XII inhibitory properties

    Get PDF
    Condensation of substituted anthranilic acids with 4-isothiocyanatoethyl-benzenesulfonamide led to series of heterocyclic benzenesulfonamides incorporating 2-mercapto-quinazolin-4-one tails. These sulfonamides were investigated as inhibitors of the human carbonic anhydrase (hCA, EC 4.2.1.1) isoforms hCA I and II (cytosolic isozymes), as well as hCA XII (a transmembrane, tumor-associated enzyme also involved in glaucoma-genesis). The new sulfonamides acted as medium potency inhibitors of hCA I (KIs of 28.5– 2954 nM), being highly effective as hCA II (KIs in the range of 0.62–12.4 nM) and XII (KIs of 0.54– 7.11 nM) inhibitors. All substitution patterns present in these compounds (e.g., halogens, methyl and methoxy moieties, in positions 6, 7 and/or 8 of the 2-mercapto-quinazolin-4-one ring) led to highly effective hCA II/XII inhibitors. These compounds should thus be of interest as preclinical candidates in pathologies in which the activity of these enzymes should be inhibited, such as glaucoma (CA II and XII as targets) or some tumors in which the activity of isoforms CA II and XII is dysregulated
    corecore