166 research outputs found

    Use of FTIR Analysis to Control the Self-Healing Functionality of Epoxy Resins

    Get PDF
    ABSTRACT The present contribution relates to the applications of FT-IR investigation in the field of thermosetting polymers with structural function. In particular, we focus our attention on self-healing materials that are the subject of increasing interest because they can be used in many different applications extending the lifetime of the material. The purpose of this chapter is to provide a method to control the success of the self-repair reactions. We show as Infrared Spectroscopy proves to be a useful way to identify metathesis product directly inside the epoxy resin during the curing reactions of epoxy formulations containing catalyst powder dispersed at molecular level

    Improving the aircraft safety by advanced structures and protecting nanofillers

    Get PDF
    2012 - 2013Inspection and Maintenance are important aspects when considering the availability of aircraft for revenue flights. Modern airframe design is exploiting new exciting developments in materials and structures to construct ever more efficient air vehicle able to enable efficient maintenance. The improvement in the aircraft safety by advanced structures and protecting nanofillers is a revolutionary approach that should lead to the creation of novel generation of multifunctional aircraft materials with strongly desired properties and design flexibilities. In recent years, the development of new nanostructured materials has enabled an evolving shift from single purpose materials to multifunctional systems that can provide greater value than the base materials alone; these materials possess attributes beyond the basic strength and stiffness that typically drive the science and engineering of the material for structural systems. Structural materials can be designed to have integrated electrical, electromagnetic, flame resistance, and possibly other functionalities that work in synergy to provide advantages that reach beyond that of the sum of the individual capabilities. Materials of this kind have tremendous potential to impact future structural performance by reducing size, weight, cost, power consumption and complexity while improving efficiency, safety and versatility. It is a well-known fact that, actually, also a very advanced design of an aircraft has to take required inspection intervals into account. An aircraft with inherent protective abilities could help to significantly extend the inspection intervals, thereby increasing aircraft availability. The challenge in this research is to develop and apply a multifunctional composite for structural applications. The aim of this project is the formulation, preparation and characterization of structural thermosetting composites containing dispersed protective nanofillers. This project specifically targets composites tailored for multifunctional applications such as lightning strike protection, and flame resistance. These composites were designed to enable their application on next generation aircrafts. With regard to the objectives of this PhD project the multifunctional composite systems were developed with the aim of overcoming the following drawbacks of the composite materials: • reduced electrical conductivity; • poor flame resistance. The thermosetting material was projected considering compatibility criteria so that to integrate different functions into a material that is capable of bearing mechanical loads and serves as a structural material element. [edited by author]XII n.s

    Thermo‑mechanical properties and electrical mapping of nanoscale domains of carbon‑based structural resins

    Get PDF
    Carbon nanostructured forms, such as one-dimensional (1D) carbon nanofbers (CNFs) and two-dimensional (2D) graphene nanoplatelets (GNPs), are increasingly attracting the attention of scientists whose studies are aimed at obtaining superior nanocomposites with unrivaled performance and/or unprecedented properties. In this work, nanocomposites loaded with diferent mass percentages of carbonaceous nanoparticles (CNFs, GNPs) capable to exhibit discrete electrical conductivity have been investigated using diferential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and tunneling atomic force microscopy (TUNA). DSC and DMA investigations highlighted that an appropriate chemical composition of the hosting matrix, together with a suitable two-stage curing cycle allows formulating structural resins characterized by high values of the curing degree (higher than 97%), glass transition temperature (also higher than 250 °C), and storage modulus (higher than 3000 MPa at room temperature). TUNA analysis evidences a satisfactory distribution of the conductive nanofller on nanometric domains

    Design of self‑healing biodegradable polymers

    Get PDF
    A biodegradable thermoplastic polymer has been formulated by solubilizing Murexide (M) salts in a commercial biodegradable vinyl alcohol copolymer (HVA). The Murexide has been employed as a self-healing fller with the aim to impart the auto-repair ability to the formulated material. Three diferent percentages (1, 3, and 5 mass%) of fller have been solubilized in HVA to evaluate the efect of the fller concentration on the thermal and self-healing properties of the resulting polymeric materials. The samples have been thermally characterized by Diferential Scanning Calorimetry (DSC) and Thermogravimetric Analyses (TGA), while their self-healing ability has been evaluated through the estimation of the storage modulus recovery, measured by Dynamic Mechanical Analysis (DMA). The results of DSC analysis have highlighted that the increase of the amount of Murexide anticipates the thermal events such as glass transition, crystallization and melting. TGA measurements have evidenced that, although there is a reduction of thermal stability of the materials in the presence of a high concentration of M, the polymer still remains stable up to 270 °C. Healing efciency higher than 80%, at a temperature beyond 60 °C, has been detected for the samples loaded with 3 and 5 mass% of Murexide, thus confrming the efcacy of this compound as an auto-repair agent and the relationship between the self-healing efciency and its amount. For a temperature lower than 70 °C, the healing tests, carried out at diferent values of tensile deformation frequency, have highlighted a frequency-dependent healing efciency. This dependence becomes negligible at higher temperatures for which the healing efciency approaches the value of 100%

    Carbon-Based Aeronautical Epoxy Nanocomposites: Effectiveness of Atomic Force Microscopy (AFM) in Investigating the Dispersion of Different Carbonaceous Nanoparticles

    Get PDF
    The capability of Atomic Force Microscopy (AFM) to characterize composite material interfaces can help in the design of new carbon-based nanocomposites by providing useful information on the structure−property relationship. In this paper, the potentiality of AFM is explored to investigate the dispersion and the morphological features of aeronautical epoxy resins loaded with several carbon nanostructured fillers. Fourier Transform Infrared Spectroscopy (FTIR) and thermal investigations of the formulated samples have also been performed. The FTIR results show that, among the examined nanoparticles, exfoliated graphite (EG) with a predominantly two-dimensional (2D) shape favors the hardening process of the epoxy matrix, increasing its reaction rate. As evidenced by the FTIR signal related to the epoxy stretching frequency (907 cm−1), the accelerating effect of the EG sample increases as the filler concentration increases. This effect, already observable for curing treatment of 60 min conducted at the low temperature of 125 °C, suggests a very fast opening of epoxy groups at the beginning of the cross-linking process. For all the analyzed samples, the percentage of the curing degree (DC) goes beyond 90%, reaching up to 100% for the EG-based nanocomposites. Besides, the addition of the exfoliated graphite enhances the thermostability of the samples up to about 370 °C, even in the case of very low EG percentages (0.05% by weight)

    Hybrid Hemp Particles as Functional Fillers for the Manufacturing of Hydrophobic and Anti-icing Epoxy Composite Coatings

    Get PDF
    The development of hydrophobic composite coatings is of great interest for several applications in the aerospace industry. Functionalized microparticles can be obtained from waste fabrics and employed as fillers to prepare sustainable hydrophobic epoxy-based coatings. Following a waste-to-wealth approach, a novel hydrophobic epoxy-based composite including hemp microparticles (HMPs) functionalized with waterglass solution, 3-aminopropyl triethoxysilane, polypropylene-graft-maleic anhydride, and either hexadecyltrimethoxysilane or 1H,1H,2H,2H-perfluorooctyltriethoxysilane is presented. The resulting epoxy coatings based on hydrophobic HMPs were cast on aeronautical carbon fiber-reinforced panels to improve their anti-icing performance. Wettability and anti-icing behavior of the prepared composites were investigated at 25 °C and −30 °C (complete icing time), respectively. Samples cast with the composite coating can achieve up to 30 °C higher water contact angle and doubled icing time than aeronautical panels treated with unfilled epoxy resin. A low content (2 wt %) of tailored HMPs causes an increase of ∼26% in the glass transition temperature of the coatings compared to pristine resin, confirming the good interaction between the hemp filler and epoxy matrix at the interphase. Finally, atomic force microscopy reveals that the HMPs can induce the formation of a hierarchical structure on the surface of casted panels. This rough morphology, combined with the silane activity, allows the preparation of aeronautical substrates with enhanced hydrophobicity, anti-icing capability, and thermal stability

    Electrical conductivity of carbon nanofiber reinforced resins: Potentiality of Tunneling Atomic Force Microscopy (TUNA) technique

    Get PDF
    Epoxy nanocomposites able to meet pressing industrial requirements in the field of structural material have been developed and characterized. Tunneling Atomic Force Microscopy (TUNA), which is able to detect ultra-low currents ranging from 80 fA to 120 pA, was used to correlate the local topography with electrical properties of tetraglycidyl methylene dianiline (TGMDA) epoxy nanocomposites at low concentration of carbon nanofibers (CNFs) ranging from 0.05% up to 2% by wt. The results show the unique capability of TUNA technique in identifying conductive pathways in CNF/resins even without modifying the morphology with usual treatments employed to create electrical contacts to the ground

    The role of carbon nanofiber defects on the electrical and mechanical properties of CNF-based resins

    Get PDF
    Heat treatment of carbon nanofibers has proven to be an effective method in removing defects from carbon nanofibers, causing a strong increase in their structural perfection and thermal stability. It affects the bonding states of carbon atoms in the nanofiber structure and causes a significant transformation in the hybridization state of the bonded carbon atoms.Nanofilled resins made of heat-treated CNF show significant increases in their electrical conductivity even at low concentrations. This confirms that enhancement in the perfection of the fiber structure with consequent change in the morphological features plays a prominent role in affecting the electrical properties. Indeed heat-treated CNFs display a stiff structure and a smooth surface which tends to lower the thickness of the unavoidable insulating epoxy layer formed around the CNF which, in turn, plays a fundamental role in the electrical transport properties along the conducting clusters. This might be very beneficial in terms of electrical conductivity but might have negligible effect on the mechanical properties

    Optimization of Graphene-Based Materials Outperforming Host Epoxy Matrices

    Get PDF
    The degree of graphite exfoliation and edge-carboxylated layers can be controlled and balanced to design lightweight materials characterized by both low electrical percolation thresholds (EPT) and improved mechanical properties. So far, this challenging task has been undoubtedly very hard to achieve. The results presented in this paper highlight the effect of exfoliation degree and the role of edge-carboxylated graphite layers to give self-assembled structures embedded in the polymeric matrix. Graphene layers inside the matrix may serve as building blocks of complex systems that could outperform the host matrix. Improvements in electrical percolation and mechanical performance have been obtained by a synergic effect due to finely balancing the degree of exfoliation and the chemistry of graphene edges which favors the interfacial interaction between polymer and carbon layers. In particular, for epoxy-based resins including two partially exfoliated graphite samples, differing essentially in the content of carboxylated groups, the percolation threshold reduces from 3 wt% down to 0.3 wt%, as the carboxylated group content increases up to 10 wt%. Edge-carboxylated nanosheets also increase the nanofiller/epoxy matrix interaction, determining a relevant reinforcement in the elastic modulus

    Electrospun Membranes Designed for Burst Release of New Gold-Complexes Inducing Apoptosis of Melanoma Cells

    Get PDF
    Two non-commercial metallic Au-based complexes were tested against one of the most aggressive malignant melanomas of the skin (MeWo cells), through cell viability and time-lapse live-cell imaging system assays. The tests with the complexes were carried out both in the form of free metallic complexes, directly in contact with the MeWo cell line culture, and embedded in fibers of Polycaprolactone (PCL) membranes produced by the electrospinning technique. Membranes functionalized with complexes were prepared to evaluate the efficiency of the membranes against the melanoma cells and therefore their feasibility in the application as an antitumoral patch for topical use. Both series of tests highlighted a very effective antitumoral activity, manifesting a very relevant cell viability inhibition after both 24 h and 48 h. In the case of the AuM1 complex at the concentration of 20 mM, melanoma cells completely died in this short period of time. A mortality of around 70% was detected from the tests performed using the membranes functionalized with AuM1 complex at a very low concentration (3 wt.%), even after 24 h of the contact period. The synthesized complexes also manifest high selectivity with respect to the MeWo cells. The peculiar structural and morphological organization of the nanofibers constituting the membranes allows for a very effective antitumoral activity in the first 3 h of treatment. Experimental points of the release profiles were perfectly fitted with theoretical curves, which easily allow interpretation of the kinetic phenomena occurring in the release of the synthesized complexes in the chosen medium
    • …
    corecore