113 research outputs found

    Morpho-Anatomical, Physiological, and Mineral Composition Responses Induced by a Vegetal-Based Biostimulant at Three Rates of Foliar Application in Greenhouse Lettuce

    Get PDF
    A promising strategy for sustainably increasing the quality and yield of horticultural products is the use of natural plant biostimulants. In this work, through a greenhouse experiment, we evaluated the effect of a legume-derived biostimulant at three dose treatments (0.0 control, 2.5 mL L−1, and 5.0 mL L−1) on the yield performance, nutrients traits, leaf anatomical traits, gas exchanges, and carbon photosynthetic assimilation of greenhouse lettuce. The lettuce plants were foliar sprayed every 7 days for 5 weeks. The application of plant biostimulant, at both lower and higher dosages, increased the nutrient use efficiency, root dry weight, and leaf area. However, it is noteworthy that the 5.0 mL L−1 dose enhanced photosynthetic activity in the early phase of growth (15 DAT), thus supplying carbon skeletons useful for increasing the number of leaves and their efficiency (higher SPAD), and for boosting nutrient uptake (P, S, and K) and transport to leaves, while the 2.5 mL L−1 dose exerted specific effects on roots, increasing their dimension and enabling them to better use nitrate and Ca. A higher dose of biostimulant application might find its way in shorter growing cycle, thus presenting new horizons for new lines of research in baby leaves production

    Novel compound mutations in the mitochondrial translation elongation factor (TSFM) gene cause severe cardiomyopathy with myocardial fibro-adipose replacement

    Get PDF
    Primary mitochondrial dysfunction is an under-appreciated cause of cardiomyopathy, especially when cardiac symptoms are the unique or prevalent manifestation of disease. Here, we report an unusual presentation of mitochondrial cardiomyopathy, with dilated phenotype and pathologic evidence of biventricular fibro-adipose replacement, in a 33-year old woman who underwent cardiac transplant. Whole exome sequencing revealed two novel compound heterozygous variants in the TSFM gene, coding for the mitochondrial translation elongation factor EF-Ts. This protein participates in the elongation step of mitochondrial translation by binding and stabilizing the translation elongation factor Tu (EF-Tu). Bioinformatics analysis predicted a destabilization of the EF-Ts variants complex with EF-Tu, in agreement with the dramatic steady-state level reduction of both proteins in the clinically affected myocardium, which demonstrated a combined respiratory chain enzyme deficiency. In patient fibroblasts, the decrease of EF-Ts was paralleled by up-regulation of EF-Tu and induction of genes involved in mitochondrial biogenesis, along with increased expression of respiratory chain subunits and normal oxygen consumption rate. Our report extends the current picture of morphologic phenotypes associated with mitochondrial cardiomyopathies and confirms the heart as a main target of TSFM dysfunction. The compensatory response detected in patient fibroblasts might explain the tissue-specific expression of TSFM-associated disease

    MIS-C and co-infection with P. vivax and P. falciparum in a child: a clinical conundrum

    Get PDF
    Background The ongoing Coronavirus Disease 2019 (COVID-19) epidemic represents an unprecedented global health challenge. Many COVID-19 symptoms are similar to symptoms that can occur in other infections. Malaria should always be considered in patients with SARS-CoV-2 infection returning from endemic areas. Case presentation We present the first case of multisystem inflammatory syndrome (MIS-C) and Plasmodium vivax-falciparum and SARS-CoV2 coinfection in children. Despite clearance of parassitaemia and a negative COVID-19 nasopharyngeal PCR, the patient's clinical conditions worsened. The World Health Organization (WHO) criteria were used to make the diagnosis of MIS-C. Treatment with intravenous immunoglobulins and methylprednisolone was effective. Conclusions This case emphasizes the importance of considering malaria diagnosis in patients returning from endemic areas, even in the COVID 19 era. Malaria and SARS-CoV2 co-infection may increase the risk of MIS-C, for which early detection is critical for proper management

    Morpho-Metric and Specialized Metabolites Modulation of Parsley Microgreens through Selective LED Wavebands

    Get PDF
    Plant factories and high-tech greenhouses offer the opportunity to modulate plant growth, morphology and qualitative content through the management of artificial light (intensity, photoperiod and spectrum). In this study, three Light Emitting Diode (LED) lighting systems, with blue (B, 460 nm), red (R, 650 nm) and mixed red + green-yellow + blue (RGB) light were used to grow parsley microgreens to understand how light quality could change the phenotype and the profile of secondary metabolites. Plants showed altered morphological characteristics and higher amounts of secondary metabolites under RGB LEDs treatment. The results demonstrated that microgreens under red light showed the highest fresh yield, petiole length, coumaric acid content but also the highest nitrate content. Plants under RGB light showed the highest dry matter percentage and highest content of total and single polyphenols content, while blue light showed the highest ascorbic acid and ABTS antioxidant activity. Moreover, microgreens under red light showed more compact leaves with less intercellular spaces, while under blue and RGB light, the leaves displayed ticker spongy mesophyll with higher percentage of intercellular spaces. Therefore, the specific spectral band was able to modify not only the metabolic profile, but also it could modulate the differentiation of mesophyll cells. Light quality as a preharvest factor helps to shape the final parsley microgreens product as a whole, not only in terms of yield and quality, but also from a morpho-anatomical point of vie

    Bone sarcoma patient-derived xenografts are faithful and stable preclinical models for molecular and therapeutic investigations

    Get PDF
    Standard therapy of osteosarcoma (OS) and Ewing sarcoma (EW) rests on cytotoxic regimes, which are largely unsuccessful in advanced patients. Preclinical models are needed to break this impasse. A panel of patient-derived xenografts (PDX) was established by implantation of fresh, surgically resected osteosarcoma (OS) and Ewing sarcoma (EW) in NSG mice. Engraftment was obtained in 22 of 61 OS (36%) and 7 of 29 EW (24%). The success rate in establishing primary cell cultures from OS was lower than the percentage of PDX engraftment in mice, whereas the reverse was observed for EW; the implementation of both in vivo and in vitro seeding increased the proportion of patients yielding at least one workable model. The establishment of in vitro cultures from PDX was highly efficient in both tumor types, reaching 100% for EW. Morphological and immunohistochemical (SATB2, P-glycoprotein 1, CD99, caveolin 1) studies and gene expression profiling showed a remarkable similarity between patient's tumor and PDX, which was maintained over several passages in mice, whereas cell cultures displayed a lower correlation with human samples. Genes differentially expressed between OS original tumor and PDX mostly belonged to leuykocyte-specific pathways, as human infiltrate is gradually replaced by murine leukocytes during growth in mice. In EW, which contained scant infiltrates, no gene was differentially expressed between the original tumor and the PDX. A novel therapeutic combination of anti-CD99 diabody C7 and irinotecan was tested against two EW PDX; both drugs inhibited PDX growth, the addition of anti-CD99 was beneficial when chemotherapy alone was less effective. The panel of OS and EW PDX faithfully mirrored morphologic and genetic features of bone sarcomas, representing reliable models to test therapeutic approaches

    Tecnología y Sociedad. Análisis de procesos de innovación y cambio tecnológico en diversos territorios rurales de Argentina

    Get PDF
    El libro demuestra a través de datos que, ante un desafío tan relevante es indispensable articular la investigación y el desarrollo tecnológico, la extensión y la transferencia tecnológica, la vinculación tecnológica, las articulaciones con otras instituciones, la gestión del conocimiento y la comunicación. Asimismo, expone que los procesos de innovación son altamente sensibles a los contextos socioeconómicos y a la implementación de políticas públicas.Coordinación Nacional de Transferencia y ExtensiónFil: Carrapizo, Verónica Noemí. Instituto Nacional de Tecnología Agropecuaria (INTA). Coordinación Nacional de Transferencia y Extensión; ArgentinaFil: Escola, Fernando. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; ArgentinaFil: Giordano, Gabriela. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Investigación Investigación y Desarrollo Tecnológico para la Agricultura Familiar. Región Pampeana; ArgentinaFil: Sanchez, Guillermo. Instituto Nacional de Tecnología Agropecuaria (INTA). Coordinación Nacional de Transferencia y Extensión; ArgentinaFil: Paredes, Maria de los Angeles. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Abra Pampa; ArgentinaFil: Bodrero, Mercedes Daniela. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Marcos Juárez; ArgentinaFil: Brieva, Susana Silvia. Instituto Nacional de Tecnología Agropecuaria (INTA). Estación Experimental Agropecuaria Balcarce; ArgentinaFil: Juarez, Paula. Universidad Nacional de Quilmes. Instituto de Estudios sobre la Ciencia y la Tecnología; Argentin

    Early stability and late random tumor progression of a HER2-positive primary breast cancer patient-derived xenograft

    Get PDF
    We established patient-derived xenografts (PDX) from human primary breast cancers and studied whether stability or progressive events occurred during long-term in vivo passages (up to 4 years) in severely immunodeficient mice. While most PDX showed stable biomarker expression and growth phenotype, a HER2-positive PDX (PDX-BRB4) originated a subline (out of 6 studied in parallel) that progressively acquired a significantly increased tumor growth rate, resistance to cell senescence of in vitro cultures, increased stem cell marker expression and high lung metastatic ability, along with a strong decrease of BCL2 expression. RNAseq analysis of the progressed subline showed that BCL2 was connected to three main hub genes also down-regulated (CDKN2A, STAT5A and WT1). Gene expression of progressed subline suggested a partial epithelial-to-mesenchymal transition. PDX-BRB4 with its progressed subline is a preclinical model mirroring the clinical paradox of high level-BCL2 as a good prognostic factor in breast cancer. Sequential in vivo passages of PDX-BRB4 chronically treated with trastuzumab developed progressive loss of sensitivity to trastuzumab while HER2 expression and sensitivity to the pan-HER tyrosine kinase inhibitor neratinib were maintained. Long-term PDX studies, even though demanding, can originate new preclinical models, suitable to investigate the mechanisms of breast cancer progression and new therapeutic approaches

    Development and Implementation of the AIDA International Registry for Patients with Non-Infectious Uveitis

    Get PDF
    Introduction: The aim of this paper is to point out the design, development and deployment of the AutoInflammatory Disease Alliance (AIDA) International Registry for paediatric and adult patients with non-infectious uveitis (NIU). Methods: This is a physician-driven, population- and electronic-based registry implemented for both retrospective and prospective collection of real-world demographics, clinical, laboratory, instrumental and socioeconomic data of patients with uveitis and other non-infectious inflammatory ocular diseases recruited through the AIDA Network. Data recruitment, based on the Research Electronic Data Capture (REDCap) tool, is thought to collect standardised information for real-life research and has been developed to change over time according to future scientific acquisitions and potentially communicate with other similar instruments. Security, data quality and data governance are cornerstones of this platform. Results: Ninety-five centres have been involved from 19 countries and four continents from 24 March to 16 November 2021. Forty-eight out of 95 have already obtained the approval from their local ethics committees. At present, the platform counts 259 users (95 principal investigators, 160 site investigators, 2 lead investigators, and 2 data managers). The AIDA Registry collects baseline and follow-up data using 3943 fields organised into 13 instruments, including patient's demographics, history, symptoms, trigger/risk factors, therapies and healthcare utilization for patients with NIU. Conclusions: The development of the AIDA Registry for patients with NIU will facilitate the collection of standardised data leading to real-world evidence and enabling international multicentre collaborative research through inclusion of patients and their families worldwide

    Mowat-Wilson syndrome : growth charts

    Get PDF
    Background Mowat-Wilson syndrome (MWS; OMIM #235730) is a genetic condition caused by heterozygous mutations or deletions of theZEB2gene. It is characterized by moderate-severe intellectual disability, epilepsy, Hirschsprung disease and multiple organ malformations of which congenital heart defects and urogenital anomalies are the most frequent ones. To date, a clear description of the physical development of MWS patients does not exist. The aim of this study is to provide up-to-date growth charts specific for infants and children with MWS. Charts for males and females aged from 0 to 16 years were generated using a total of 2865 measurements from 99 MWS patients of different ancestries. All data were collected through extensive collaborations with the Italian MWS association (AIMW) and the MWS Foundation. The GAMLSS package for the R statistical computing software was used to model the growth charts. Height, weight, body mass index (BMI) and head circumference were compared to those from standard international growth charts for healthy children. Results In newborns, weight and length were distributed as in the general population, while head circumference was slightly smaller, with an average below the 30th centile. Up to the age of 7 years, weight and height distribution was shifted to slightly lower values than in the general population; after that, the difference increased further, with 50% of the affected children below the 5th centile of the general population. BMI distribution was similar to that of non-affected children until the age of 7 years, at which point values in MWS children increased with a less steep slope, particularly in males. Microcephaly was sometimes present at birth, but in most cases it developed gradually during infancy; many children had a small head circumference, between the 3rd and the 10th centile, rather than being truly microcephalic (at least 2 SD below the mean). Most patients were of slender build. Conclusions These charts contribute to the understanding of the natural history of MWS and should assist pediatricians and other caregivers in providing optimal care to MWS individuals who show problems related to physical growth. This is the first study on growth in patients with MWS.Peer reviewe
    • …
    corecore