38 research outputs found

    Mammalian smaug is a translational repressor that forms cytoplasmic foci similar to stress granules

    Get PDF
    Cytoplasmic events depending on RNA-binding proteins contribute to the fine-tuning of gene expression. Sterile α motif-containing RNA-binding proteins constitute a novel family of post-transcriptional regulators that recognize a specific RNA sequence motif known as Smaug recognition element (SRE). The Drosophila member of this family, dSmaug, triggers the translational repression and deadenylation of maternal mRNAs by independent mechanisms, and the yeast homologue Vts1 stimulates degradation of SRE-containing messengers. Two homologous genes are present in the mammalian genome. Here we showed that hSmaug 1, encoded in human chromosome 14, represses the translation of reporter transcripts carrying SRE motifs. When expressed in fibroblasts, hSmaug 1 forms cytoplasmic granules that contain polyadenylated mRNA and the RNA-binding proteins Staufen, TIAR, TIA-1, and HuR. Smaug 1 foci are distinct from degradation foci. The murine protein mSmaug 1 is expressed in the central nervous system and is abundant in post-synaptic densities, a subcellular region where translation is tightly regulated by synaptic stimulation. Biochemical analysis indicated that mSmaug 1 is present in synaptoneurosomal 20 S particles. These results suggest a role for mammalian Smaug 1 in RNA granule formation and translation regulation in neurons.Fil: Baez, Maria Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Boccaccio, Graciela Lidia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    Design of a lentiviral vector as a therapeutic strategy against alzheimer´s disease

    Get PDF
    Alzheimer’s disease (AD) is a chronic neurodegenerative disorder characterized by a progressive loss of cognitive functions. One of the hallmarks is the formation of amyloid plaques, composed mainly by Aß peptide oligomers (AβOs). Neprilysin (NEP) is the most important endopeptidase and crucial for the degradation of Aß in the brain, avoiding amyloid plaques formation. Because NEP is decreased in brains of patients with AD, we aim to develop a lentiviral vector (LV) capable of specifically expressing in hippocampal neurons, to study its role in AD and therefore its possible therapeutic function.First, a construct containing the complete cDNA of NEP downstream of the hippocampal-specific promoter human synapsin (SYN-1) was performed. NEP cDNA was obtained from pBOB-NEP plasmid and was cloned under the SYN-1 promoter to obtain SYN-NEP plasmid. SYN-NEP also contains the ubiquitous CMV promoter, located outside the sequence to be packaged in LV. The correct cloning was checked by BamHI/KpnI digestion followed by 1% agarose gel electrophoresis and was verified by sequencing. To test NEP expression under the CMV promoter, 293T cells were transfected with SYN-NEP. SYN-RFP plasmid expressing the reporter red fluorescent protein (RFP) and pBOB-NEP were used as transfection and positive controls, respectively. After 48 hours NEP expression was evaluated by western blot (WB) and RFP by fluorescence microscopy.Electrophoresis of SYN-NEP digestion resulted in two bands of 3392pb and 7644pb, which coincided with the molecular weights of the insert containing NEP and backbone, respectively. This in turn was validated by sequencing. Transfection efficiency calculated by expression of RFP was 80%. WB showed a 85kDa band only in those lanes corresponding to transfection with pBOB-NEP and SYN-NEP.In conclusion, NEP was successfully cloned downstream of SYN-1 promoter and is expressed correctly under a ubiquitous promoter. This construction is the first step for the production of LV.Fil: Abrey Recalde, Maria Jimena. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional e Ingeniería Biomédica - Hospital Italiano. Instituto de Medicina Traslacional e Ingeniería Biomédica.- Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional e Ingeniería Biomédica; ArgentinaFil: Gonzalez Hermida, Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional e Ingeniería Biomédica - Hospital Italiano. Instituto de Medicina Traslacional e Ingeniería Biomédica.- Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional e Ingeniería Biomédica; ArgentinaFil: Baez, Veronica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencias; ArgentinaFil: Jerusalinsky, Diana Alicia. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencias; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Frecha, Cecilia Ariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Medicina Traslacional e Ingeniería Biomédica - Hospital Italiano. Instituto de Medicina Traslacional e Ingeniería Biomédica.- Instituto Universitario Hospital Italiano de Buenos Aires. Instituto de Medicina Traslacional e Ingeniería Biomédica; ArgentinaLXI Reunión anual de la Sociedad Argentina de Investigación Clinica; LXVI, Reunión anual de la Sociedad Argentina de Inmunología; XLVIII Reunión Anual de la Sociedad Argentina de Farmacología Experimental; VII Reunión Anual de la Sociedad Argentina de Nanomedicina y V Congreso Nacional de la Asociación Argentina de Ciencia y Tecnología de Animales de LaboratorioArgentinaSociedad Argentina de Investigación ClinicaSociedad Argentina de InmunologíaSociedad Argentina de Farmacología ExperimentalSociedad Argentina de NanomedicinaAsociación Argentina de ciencia y tecnología de animales de Laboratori

    Reduced expression of hippocampal GluN2A-NMDAR increases seizure susceptibility and causes deficits in contextual memory

    Get PDF
    N-methyl-D-aspartate receptors are heterotetramers composed of two GluN1 obligatory subunits and two regulatory subunits. In cognitive-related brain structures, GluN2A and GluN2B are the most abundant regulatory subunits, and their expression is subjected to tight regulation. During development, GluN2B expression is characteristic of immature synapses, whereas GluN2A is present in mature ones. This change in expression induces a shift in GluN2A/GluN2B ratio known as developmental switch. Moreover, modifications in this relationship have been associated with learning and memory, as well as different pathologies. In this work, we used a specific shRNA to induce a reduction in GluN2A expression after the developmental switch, both in vitro in primary cultured hippocampal neurons and in vivo in adult male Wistar rats. After in vitro characterization, we performed a cognitive profile and evaluated seizure susceptibility in vivo. Our in vitro results showed that the decrease in the expression of GluN2A changes GluN2A/GluN2B ratio without altering the expression of other regulatory subunits. Moreover, rats expressing the anti-GluN2A shRNA in vivo displayed an impaired contextual fear-conditioning memory. In addition, these animals showed increased seizure susceptibility, in terms of both time and intensity, which led us to conclude that deregulation in GluN2A expression at the hippocampus is associated with seizure susceptibility and learning–memory mechanisms.Fil: Acutain, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Griebler Luft, Jordana. Universidade Federal do Rio Grande do Sul; BrasilFil: Vázquez, Cecilia Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Popik, Bruno. Universidade Federal do Rio Grande do Sul; BrasilFil: Cercato, Magalí Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Epstein, Alberto. Universite Lyon 2; FranciaFil: Salvetti, Anna. Inserm; FranciaFil: Jerusalinsky, Diana Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: de Oliveira Alvares, Lucas. Universidade Federal do Rio Grande do Sul; BrasilFil: Baez, Maria Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentin

    Promoter sequence of Shiga Toxin II (Stx2) is recognized in vivo leading to the production of biologically active Stx2

    Get PDF
    Shiga toxins (Stxs) are the main agent responsible for the development of hemolytic uremic syndrome (HUS), the most severe and life-threatening systemic complication of infection with enterohemorrhagic Escherichia coli (EHEC) strains. We previously reported Stx2 expression by eukaryotic cells after they were transfected in vitro with the stx2 gene cloned into a prokaryotic plasmid (pStx2). The aim of this study was to evaluate whether mammalian cells were also able to express Stx2 in vivo after pStx2 injection. Mice were inoculated by hydrodynamic based transfection (HBT) with pStx2. We studied the survival, the percentage of polymorphonuclear leukocytes in plasma, plasma urea levels and histology of the kidney and the brain of mice. Mice displayed a lethal dose-response to pStx2. Stx2-mRNA was recovered from the liver and Stx2 cytotoxic activity was observed in plasma of mice injected with pStx2. Stx2 was detected by immunofluorescence in the brains of mice inoculated with pStx2, and markers of central nervous system (CNS) damage were observed, including increased expression of glial fibrillary acidic protein (GFAP) and fragmentation of NeuN in neurons. Moreover, anti-Stx2B immunized mice were protected against pStx2 inoculation. Our results show that Stx2 is expressed in vivo from the wild stx2 gene, reproducing pathogenic damage induced by purified Stx2 or secondary to EHEC-infection.Fil: Bentancor, Leticia Veronica. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ingeniería Genética y Biología Molecular y Celular; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental; ArgentinaFil: Mejias, Maria Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental; ArgentinaFil: Pinto, Alípio. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas; ArgentinaFil: Bilen, Marcos Fabian. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ingeniería Genética y Biología Molecular y Celular; ArgentinaFil: Meiss, Roberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental; ArgentinaFil: Rodriguez Galan, Maria Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Baez, Natalia Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Pedrotti, Luciano Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico - CONICET - Córdoba. Centro de Investigaciones en Bioquímica Clínica e Inmunología; ArgentinaFil: Goldstein Raij, Jorge. Universidad de Buenos Aires. Facultad de Medicina. Departamento de Ciencias Fisiológicas. Laboratorio de Fisiopatogenia; ArgentinaFil: Ghiringhelli, Pablo Daniel. Universidad Nacional de Quilmes. Departamento de Ciencia y Tecnología. Laboratorio de Ingeniería Genética y Biología Molecular y Celular; ArgentinaFil: Palermo, Marina Sandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Medicina Experimental. Academia Nacional de Medicina de Buenos Aires. Instituto de Medicina Experimental; Argentin

    Early Long-Term Memory Impairment and Changes in the Expression of Synaptic Plasticity-Associated Genes, in the McGill-R-Thy1-APP Rat Model of Alzheimer's-Like Brain Amyloidosis

    Get PDF
    Accruing evidence supports the hypothesis that memory deficits in early Alzheimer Disease (AD) might be due to synaptic failure caused by accumulation of intracellular amyloid beta (Aβ) oligomers, then secreted to the extracellular media. Transgenic mouse AD models provide valuable information on AD pathology. However, the failure to translate these findings to humans calls for models that better recapitulate the human pathology. McGill-R-Thy1-APP transgenic (Tg) rat expresses the human amyloid precursor protein (APP751) with the Swedish and Indiana mutations (of familial AD), leading to an AD-like slow-progressing brain amyloid pathology. Therefore, it offers a unique opportunity to investigate learning and memory abilities at early stages of AD, when Aβ accumulation is restricted to the intracellular compartment, prior to plaque deposition. Our goal was to further investigate early deficits in memory, particularly long-term memory in McGill-R-Thy1-APP heterozygous (Tg+/–) rats. Short-term- and long-term habituation to an open field were preserved in 3-, 4-, and 6-month-old (Tg+/–). However, long-term memory of inhibitory avoidance to a foot-shock, novel object-recognition and social approaching behavior were seriously impaired in 4-month-old (Tg+/–) male rats, suggesting that they are unable to either consolidate and/or evoke such associative and discriminative memories with aversive, emotional and spatial components. The long-term memory deficits were accompanied by increased transcript levels of genes relevant to synaptic plasticity, learning and memory processing in the hippocampus, such as Grin2b, Dlg4, Camk2b, and Syn1. Our findings indicate that in addition to the previously well-documented deficits in learning and memory, McGill-R-Thy1-APP rats display particular long-term-memory deficits and deep social behavior alterations at pre-plaque early stages of the pathology. This highlights the importance of Aβ oligomers and emphasizes the validity of the model to study AD-like early processes, with potentially predictive value.Fil: Habif, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Do Carmo, Sonia. McGill University; CanadáFil: Baez, Maria Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Colettis, Natalia Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Química y Físico-Química Biológicas "Prof. Alejandro C. Paladini". Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Instituto de Química y Físico-Química Biológicas; ArgentinaFil: Cercato, Magalí Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Salas, Daniela Alejandra. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Acutain, Maria Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Sister, Caterina Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Berkowicz, Valeria Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Canal, Maria Pilar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Gonzalez Garello, Tomas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Cuello, A. Claudio. McGill University; CanadáFil: Jerusalinsky, Diana Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentin

    Retrospective evaluation of whole exome and genome mutation calls in 746 cancer samples

    No full text
    Funder: NCI U24CA211006Abstract: The Cancer Genome Atlas (TCGA) and International Cancer Genome Consortium (ICGC) curated consensus somatic mutation calls using whole exome sequencing (WES) and whole genome sequencing (WGS), respectively. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2,658 cancers across 38 tumour types, we compare WES and WGS side-by-side from 746 TCGA samples, finding that ~80% of mutations overlap in covered exonic regions. We estimate that low variant allele fraction (VAF < 15%) and clonal heterogeneity contribute up to 68% of private WGS mutations and 71% of private WES mutations. We observe that ~30% of private WGS mutations trace to mutations identified by a single variant caller in WES consensus efforts. WGS captures both ~50% more variation in exonic regions and un-observed mutations in loci with variable GC-content. Together, our analysis highlights technological divergences between two reproducible somatic variant detection efforts

    Herpes simplex virus type 1-based amplicon vectors for fundamental research in neurosciences and gene therapy of neurological diseases

    Get PDF
    Somatic manipulation of the nervous system without the involvement of the germinal line appears as a powerful counterpart of the transgenic strategy. The use of viral vectors to produce specific, transient and localized knockout, knockdown, ectopic expression or overexpression of a gene, leads to the possibility of analyzing both in vitro and in vivo molecular basis of neural function. In this approach, viral particles engineered to carry transgenic sequences are delivered into discrete brain regions, to transduce cells that will express the transgenic products. Amplicons are replication-incompetent helper-dependent vectors derived from herpes simplex virus type 1 (HSV-1), with several advantages that potentiate their use in neurosciences: (1) minimal toxicity: amplicons do not encode any virus proteins, are neither toxic for the infected cells nor pathogenic for the inoculated animals and elicit low levels of adaptive immune responses; (2) extensive transgene capacity to carry up to 150-kb of foreign DNA; i.e., entire genes with regulatory sequences could be delivered; (3) widespread cellular tropism: amplicons can experimentally infect several cell types including glial cells, though naturally the virus infects mainly neurons and epithelial cells; (4) since the viral genome does not integrate into cellular chromosomes there is low probability to induce insertional mutagenesis. Recent investigations on gene transfer into the brain using these vectors, have focused on gene therapy of inherited genetic diseases affecting the nervous system, such as ataxias, or on neurodegenerative disorders using experimental models of Parkinson's or Alzheimer's disease. Another group of studies used amplicons to investigate complex neural functions such as neuroplasticity, anxiety, learning and memory. In this short review, we summarize recent data supporting the potential of HSV-1 based amplicon vector model for gene delivery and modulation of gene expression in primary cultures of neuronal cells and into the brain of living animals.Fil: Jerusalinsky, Diana Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Ciclo Básico Común; ArgentinaFil: Baez, Maria Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia ; ArgentinaFil: Epstein, Alberto Luis. Centre de Génétique et Physiologie Moléculaire et Cellulaire; Franci

    Búsqueda de nuevas terapias para el mal de Alzheimer

    Get PDF
    Los trabajos que les contamos aquí, se desarrollan en el Laboratorio de Neuroplasticidad y Neurotoxinas (LaNyN), del Instituto de Biología Celular y Neurociencias “Profesor Eduardo De Robertis”, en la Facultad de Medicina de la Universidad de Buenos Aires. El Profesor Eduardo De Robertis fue quien trajo el primer microscopio electrónico al país. En el año 1956 ganó por concurso el cargo de Profesor Titular de la Primera Cátedra de Histología, y trabajó en el Instituto (entonces llamado de Anatomía y Embriología) adjunto a la Cátedra, desde donde dio un gran impulso al estudio de la biología de las células, especialmente de su estructura. Comenzó entonces las tratativas para que la UBA adquiriese un microscopio electrónico y, en 1959, fue instalado en dependencias de la Cátedra de Histología y del Instituto, en la Facultad de Medicina, dando lugar a una etapa de gran desarrollo de la Biología Celular en el país. Escribió el primer libro de Biología Celular, que fue utilizado por varias generaciones de estudiantes y profesionales de la Medicina y la Biología del mundo entrero, ya que fue traducido a más de nueve idiomas. Sus investigaciones tuvieron proyección internacional y gran reconocimiento. En particular, De Robertis estudió las células del Sistema Nervioso y descubrió y describió las “vesículas sinápticas” (ver más adelante). Este hallazgo fue central para el desarrollo de las Neurociencias modernas. El ahora Instituto de Biología Celular y Neurociencias (IBCN), así bautizado desde 1992, lleva su nombre en homenaje a quien fuera su Director y un gran Maestro. Fue mentor de muchos investigadores, algunos de los cuales siguen trabajando en el IBCN, entre ellos Diana Jerusalinsky (autora de este artículo), quien continúa trabajando en el IBCN y dirige el LaNyN, fundado en 1998, continuando la tarea del Maestro. En el LaNyN se investigan mecanismos biológicos del aprendizaje y la memoria en modelos animales, tanto en condiciones normales como patológicas. Hace ya más de 15 años el LaNyN inició una colaboración con Francia, que dio lugar a la creación del Laboratorio Internacional Asociado (LIA) DeVeNIR (2010): un laboratorio virtual entre los laboratorios participantes, cuyo objetivo es el desarrollo de vectores neurotrópicos para investigación en neurociencias. De Francia, participan la Dra. Anna Salvetti y el Dr. Alberto Epstein (Ecole Normal Superieure, Lyon). Recientemente se ha incorporado un grupo de la Universidad Federal de Rio de Janeiro (UFRJ, Rio de Janeiro, Brasil), dirigido por el Dr. Sergio Ferreira, especializado en fenómenos que ocurren tempranamente en enfermedades neurodegenerativas. El objetivo principal de esta cooperación es el desarrollo de “vectores” capaces de llevar genes de interés, para ser utilizados para la investigación científica o con finalidades terapéuticasFil: Jerusalinsky, Diana Alicia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Baez, Maria Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Cercato, Magalí Cecilia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; ArgentinaFil: Frecha, Cecilia Ariana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencia "Prof. Eduardo de Robertis". Universidad de Buenos Aires. Facultad de Medicina. Instituto de Biología Celular y Neurociencia; Argentin

    NMDA receptor subunits in the adult rat hippocampus undergo similar changes after 5 minutes in an open field and after LTP induction.

    Get PDF
    NMDA receptor subunits change during development and their synaptic expression is modified rapidly after synaptic plasticity induction in hippocampal slices. However, there is scarce information on subunits expression after synaptic plasticity induction or memory acquisition, particularly in adults. GluN1, GluN2A and GluN2B NMDA receptor subunits were assessed by western blot in 1) adult rats that had explored an open field (OF) for 5 minutes, a time sufficient to induce habituation, 2) mature rat hippocampal neuron cultures depolarized by KCl and 3) hippocampal slices from adult rats where long term potentiation (LTP) was induced by theta-burst stimulation (TBS). GluN1 and GluN2A, though not GluN2B, were significantly higher 70 minutes--but not 30 minutes--after a 5 minutes session in an OF. GluN1 and GluN2A total immunofluorescence and puncta in neurites increased in cultures, as evaluated 70 minutes after KCl stimulation. Similar changes were found in hippocampal slices 70 minutes after LTP induction. To start to explore underlying mechanisms, hippocampal slices were treated either with cycloheximide (a translation inhibitor) or actinomycin D (a transcription inhibitor) during electrophysiological assays. It was corroborated that translation was necessary for LTP induction and expression. The rise in GluN1 depends on transcription and translation, while the increase in GluN2A appears to mainly depend on translation, though a contribution of some remaining transcriptional activity during actinomycin D treatment could not be rouled out. LTP effective induction was required for the subunits to increase. Although in the three models same subunits suffered modifications in the same direction, within an apparently similar temporal course, further investigation is required to reveal if they are related processes and to find out whether they are causally related with synaptic plasticity, learning and memory

    Staufen: From Embryo Polarity to Cellular Stress and Neurodegeneration

    Get PDF
    Staufen is a double-stranded RNA-binding protein that forms RNA granules by RNA-dependent and -independent interactions. Staufen was initially described in Drosophila as a key molecule for targeting maternal mRNAs. In vertebrates, two highly similar paralogs with several splicing variants mediate mRNA transport, thus affecting neuron plasticity, learning and memory. Staufen also regulates translation and mRNA decay. In recent years, Staufen was shown to be an important regulatory component of stress granules (SGs), which are large aggregates of silenced mRNPs specifically induced upon acute cellular stress. SGs contribute to cell survival by reprogramming translation and inhibiting pro-apoptotic pathways, and Staufen appears to negatively modulate SG formation by several mechanisms. More recently, mammalian Staufen was found in RNA granules and pathological cytoplasmic aggregates related to SGs containing huntingtin, TDP43, FUS/TLS or FMRP. In addition, Staufen binds CUG repeats present in mutant RNAs causative of degenerative conditions, thus ameliorating disease. Finally, Staufen affects HIV and influenza infection at several levels. Collectively, these observations unveil important roles for Staufen-mediated post-transcriptional regulation in a growing number of human diseases.Fil: Martínez Tosar, Leandro Julián. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Thomas, Maria Gabriela. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; ArgentinaFil: Baez, Maria Veronica. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Biología Celular y Neurociencias "Profesor Eduardo de Robertis"; Argentina. Universidad de Buenos Aires. Facultad de Medicina; ArgentinaFil: Ibañez, Irene Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires; Argentina. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Chernomoretz, Ariel. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Boccaccio, Graciela Lidia. Fundación Instituto Leloir; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquimicas de Buenos Aires; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentin
    corecore