22 research outputs found
Historic cartography of L'Aquila city as a support to the study of earthquake damaged buildings
The city-center of L'Aquila suffered big damages from the main seismic event (6th April 2009, 3:32 a.m., local time; Ml=5.8, Mw= 6.2) of the seismic sequence that included hundreds of aftershocks (more than 30 of them 3.5<5.0) (INGV, 2009). Causes and modality of the collapse of some buildings are still under investigation. A 1:2000 map representing the center of L'Aquila city at the beginning of twentieth century was recently found and the comparison of this map with contemporary ones can help the study of the causes of the different response to seismic stress to different aged buildings. This study represents the first step to build a database of historic buildings in L'Aquila to test a potential correlation between the anti-earthquake regulations adopted over the years and the resulting damages. A comparison with post earthquakes damage map and the map of seismic zoning was performer to find all the possible combination of other parameters that together with building age can help to evaluate building vulnerability
Biotin-targeted Pluronic® P123/F127 mixed micelles delivering niclosamide: A repositioning strategy to treat drug-resistant lung cancer cells
With the aim to develop alternative therapeutic tools for the treatment of resistant cancers, here we propose targeted Pluronic1 P123/F127 mixed micelles (PMM) delivering niclosamide (NCL) as a repositioning strategy to treat multidrug resistant non-small lung cancer cell lines. To build multifunctional PMM for targeting and imaging, Pluronic1 F127 was conjugated with biotin, while Pluronic1 P123 was fluorescently tagged with rhodamine B, in both cases at one of the two hydroxyl end groups. This design intended to avoid any interference of rhodamine B on biotin exposition on PMM surface, which is a key fundamental for cell trafficking studies. Biotin-decorated PMM were internalized more efficiently than non-targeted PMM in A549 lung cancer cells, while very low internalization was found in NHI3T3 normal fibroblasts. Biotin-decorated PMM entrapped NCL with good efficiency, displayed sustained drug release in protein-rich media and improved cytotoxicity in A549 cells as compared to free NCL (P < 0.01). To go in depth into the actual therapeutic potential of NCL-loaded PMM, a cisplatin-resistant A549 lung cancer cell line (CPr-A549) was developed and its multidrug resistance tested against common chemotherapeutics. Free NCL was able to overcome chemoresistance showing cytotoxic effects in this cell line ascribable to nucleolar stress, which was associated to a significant increase of the ribosomal protein rpL3 and consequent up-regulation of p21. It is noteworthy that biotin- decorated PMM carrying NCL at low doses demonstrated a significantly higher cytotoxicity than free NCL in CPr-A549. These results point at NCL-based regimen with targeted PMM as a possible second-line chemotherapy for lung cancer showing cisplatin or multidrug resistance
Valproic Acid Synergizes With Cisplatin and Cetuximab in vitro and in vivo in Head and Neck Cancer by Targeting the Mechanisms of Resistance
Recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) is a
devastating malignancy with a poor prognosis. The combination of cisplatin (CDDP) plus
cetuximab (CX) is one of the standard first-line treatments in this disease. However, this
therapeutic regimen is often associated with high toxicity and resistance, suggesting that
new combinatorial strategies are needed to improve its therapeutic index. In our study,
we evaluated the antitumor effects of valproic acid (VPA), a well-known antiepileptic
agent with histone deacetylase inhibitory activity, in combination with CDDP/CX doublet
in head and neck squamous cell carcinoma (HNSCC) models. We demonstrated, in
HNSCC cell lines, but not in normal human fibroblasts, that simultaneous exposure to
equitoxic doses of VPA plus CDDP/CX resulted in a clear synergistic antiproliferative and
pro-apoptotic effects. The synergistic antitumor effect was confirmed in four different
3D-self-assembled spheroid models, suggesting the ability of the combined approach
to affect also the cancer stem cells compartment. Mechanistically, VPA enhanced
DNA damage in combination treatment by reducing the mRNA expression of ERCC
Excision Repair 1, a critical player in DNA repair, and by increasing CDDP intracellular
concentration via upregulation at transcriptional level of CDDP influx channel copper
transporter 1 and downregulation of the ATPAse ATP7B involved in CDDP-export.
Valproic acid also induced a dose-dependent downregulation of epidermal growth factor
receptor (EGFR) expression and of MAPK and AKT downstream signaling pathways
and prevent CDDP- and/or CX-induced EGFR nuclear translocation, a well-known
mechanism of resistance to chemotherapy. Indeed, VPA impaired the transcription
of genes induced by non-canonical activity of nuclear EGFR, such as cyclin D1 and thymidylate synthase. Finally, we confirmed the synergistic antitumor effect also
in vivo in both heterotopic and orthotopic models, demonstrating that the combined
treatment completely blocked HNSCC xenograft tumors growth in nude mice. Overall,
the introduction of a safe and generic drug such as VPA into the conventional treatment
for R/M HNSCC represents an innovative and feasible antitumor strategy that warrants
further clinical evaluation. A phase II clinical trial exploring the combination of VPA and
CDDP/CX in R/M HNSCC patients is currently ongoing in our institute
A prospective, multicenter study on hematopoietic stemcell mobilization with cyclophosphamide plus granulocyte colony-stimulating factor and ‘on-demand’ plerixafor in multiple myeloma patients treated with novel agents
High-dose melphalan plus autologous stem cell transplantation (ASCT) is a standard of care for transplant-eligible patients with newly diagnosed multiple myeloma (NDMM), and adequate hematopoietic stem cell (HSC) collection is crucial to ensure hematologic recovery after ASCT. In this prospective, observational study we evaluated HSC mobilization with granulocyte colony-stimulating factor (G-CSF), cyclophosphamide, and ‘on-demand’ plerixafor (in patients with 60% (odds ratio [OR]=4.14), lenalidomide use (OR=4.45), and grade 3-4 hematologic toxicities during induction (OR=3.53) were independently associated with a higher risk of mobilization failure or plerixafor need. Cyclophosphamide plus G-CSF and ‘on-demand’ plerixafor is an effective strategy in NDMM patients treated with novel agents, resulting in a high rate of HSC collection and high HSC yield (clinicaltrials gov. identifier: NCT03406091)
Goodbye Hartmann trial: a prospective, international, multicenter, observational study on the current use of a surgical procedure developed a century ago
Background: Literature suggests colonic resection and primary anastomosis (RPA) instead of Hartmann's procedure (HP) for the treatment of left-sided colonic emergencies. We aim to evaluate the surgical options globally used to treat patients with acute left-sided colonic emergencies and the factors that leading to the choice of treatment, comparing HP and RPA. Methods: This is a prospective, international, multicenter, observational study registered on ClinicalTrials.gov. A total 1215 patients with left-sided colonic emergencies who required surgery were included from 204 centers during the period of March 1, 2020, to May 31, 2020. with a 1-year follow-up. Results: 564 patients (43.1%) were females. The mean age was 65.9 ± 15.6 years. HP was performed in 697 (57.3%) patients and RPA in 384 (31.6%) cases. Complicated acute diverticulitis was the most common cause of left-sided colonic emergencies (40.2%), followed by colorectal malignancy (36.6%). Severe complications (Clavien-Dindo ≥ 3b) were higher in the HP group (P < 0.001). 30-day mortality was higher in HP patients (13.7%), especially in case of bowel perforation and diffused peritonitis. 1-year follow-up showed no differences on ostomy reversal rate between HP and RPA. (P = 0.127). A backward likelihood logistic regression model showed that RPA was preferred in younger patients, having low ASA score (≤ 3), in case of large bowel obstruction, absence of colonic ischemia, longer time from admission to surgery, operating early at the day working hours, by a surgeon who performed more than 50 colorectal resections. Conclusions: After 100 years since the first Hartmann's procedure, HP remains the most common treatment for left-sided colorectal emergencies. Treatment's choice depends on patient characteristics, the time of surgery and the experience of the surgeon. RPA should be considered as the gold standard for surgery, with HP being an exception
Proteomic characterization of peroxisome proliferator‐activated receptor‐γ (PPARγ) overexpressing or silenced colorectal cancer cells unveils a novel protein network associated with an aggressive phenotype
Peroxisome proliferator‐activated receptor‐γ (PPARγ) is a transcription factor of the nuclear hormone receptor superfamily implicated in a wide range of processes, including tumorigenesis. Its role in colorectal cancer (CRC) is still debated; most reports support that PPARγ reduced expression is associated with poor prognosis. We employed 2‐Dimensional Differential InGel Electrophoresis (2‐D DIGE) followed by Liquid Chromatography (LC)‐tandem Mass Spectrometry (MS/MS) to identify differentially expressed proteins and the molecular pathways underlying PPARγ expression in CRC progression. We identified several differentially expressed proteins in HT29 and HCT116 CRC cells and derived clones either silenced or overexpressing PPARγ, respectively. In Ingenuity Pathway Analysis (IPA) they showed reciprocal relation with PPARγ and a strong relationship with networks linked to cell death, growth and survival. Interestingly, five of the identified proteins, ezrin (EZR), isoform C of prelamin‐A/C (LMNA), alpha‐enolase (ENOA), prohibitin (PHB) and RuvB‐like 2 (RUVBL2) were shared by the two cell models with opposite expression levels, suggesting a possible regulation by PPARγ. mRNA and western blot analysis were undertaken to obtain a technical validation and confirm the expression trend observed by 2‐D DIGE data. We associated EZR upregulation with increased cell surface localization in PPARγ‐overexpressing cells by flow cytometry and immunofluorescence staining. We also correlated EZR and PPARγ expression in our series of CRC specimens and the expression profiling of all five proteins levels in the publicly available colon cancer genomic data from Oncomine and Cancer Genome Atlas (TCGA) colon adenocarcinoma (COAD) datasets. In summary, we identified a panel of proteins correlated with PPARγ expression that could be associated with CRC unveiling new pathways to be investigated for the selection of novel potential prognostic/predictive biomarkers and/or therapeutic targets
HSP90 identified by a proteomic approach as druggable target to reverse platinum resistance in ovarian cancer
Acquired resistance to platinum (Pt)-based therapies is an urgent unmet need in the management of epithelial ovarian cancer (EOC) patients. Here, we characterized by an unbiased proteomics method three isogenic EOC models of acquired Pt resistance (TOV-112D, OVSAHO, and MDAH-2774). Using this approach, we identified several differentially expressed proteins in Pt-resistant (Pt-res) compared to parental cells and the chaperone HSP90 as a central hub of these protein networks. Accordingly, up-regulation of HSP90 was observed in all Pt-res cells and heat-shock protein 90 alpha isoform knockout resensitizes Pt-res cells to cisplatin (CDDP) treatment. Moreover, pharmacological HSP90 inhibition using two different inhibitors [17-(allylamino)-17-demethoxygeldanamycin (17AAG) and ganetespib] synergizes with CDDP in killing Pt-res cells in all tested models. Mechanistically, genetic or pharmacological HSP90 inhibition plus CDDP -induced apoptosis and increased DNA damage, particularly in Pt-res cells. Importantly, the antitumor activities of HSP90 inhibitors (HSP90i) were confirmed both ex vivo in primary cultures derived from Pt-res EOC patients ascites and in vivo in a xenograft model. Collectively, our data suggest an innovative antitumor strategy, based on Pt compounds plus HSP90i, to rechallenge Pt-res EOC patients that might warrant further clinical evaluation
Tissue transglutaminase (TG2) is involved in the resistance of cancer cells to the histone deacetylase (HDAC) inhibitor vorinostat
Vorinostat demonstrated preclinical and clinical efficacy in human cancers and is the first histone deacetylase inhibitor (HDACi) approved for cancer treatment. Tissue transglutaminase (TG2) is a multifunctional enzyme that catalyzes a Ca2+ dependent transamidating reaction resulting in covalent cross-links between proteins. TG2 acts also as G-protein in trans-membrane signaling and as a cell surface adhesion mediator. TG2 up-regulation has been demonstrated in several cancers and its expression levels correlate with resistance to chemotherapy and metastatic potential. We demonstrated that the anti-proliferative effect of the HDACi vorinostat is paralleled by the induction of TG2 mRNA and protein expression in cancer cells but not in ex vivo treated peripheral blood lymphocytes. This effect was also shared by other pan-HDACi and resulted in increased TG2 transamidating activity. Notably, high TG2 basal levels in a panel of cancer cell lines correlated with lower vorinostat antiproliferative activity. Notably, in TG2-knockdown cancer cells vorinostat anti-proliferative and pro-apoptotic effects were enhanced, whereas in TG2-full-length transfected cells were impaired, suggesting that TG2 could represent a mechanism of intrinsic or acquired resistance to vorinostat. In fact, co-treatment of tumor cells with inhibitors of TG2 transamidating activity potentiated the antitumor effect of vorinostat. Moreover, vorinostat-resistant MCF7 cells selected by stepwise increasing concentrations of the drug, significantly overexpressed TG2 protein compared to parental cells, and co-treatment of these cells with TG2 inhibitors reversed vorinostat-resistance. Taken together, our data demonstrated that TG2 is involved in the resistance of cancer cells to vorinostat, as well as to other HDACi
Annexin A1 is involved in the acquisition and maintenance of a stem cell-like/aggressive phenotype in prostate cancer cells with acquired resistance to zoledronic acid
In this study, we have characterized the role of annexin A1 (ANXA1) in the acquisition and maintenance of stem-like/aggressive features in prostate cancer (PCa) cells comparing zoledronic acid (ZA)-resistant DU145R80 with their parental DU145 cells. ANXA1 is over-expressed in DU145R80 cells and its down-regulation abolishes their resistance to ZA. Moreover, ANXA1 induces DU145 and DU145R80 invasiveness acting through formyl peptide receptors (FPRs). Also, ANXA1 knockdown is able to inhibit epithelial to mesenchymal transition (EMT) and to reduce focal adhesion kinase (FAK) and metalloproteases (MMP)-2/9 expression in PCa cells. DU145R80 show a cancer stem cell (CSC)-like signature with a high expression of CSC markers including CD44, CD133, NANOG, Snail, Oct4 and ALDH7A1 and CSC-related genes as STAT3. Interestingly, ANXA1 knockdown induces these cells to revert from a putative prostate CSC to a more differentiated phenotype resembling DU145 PCa cell signature. Similar results are obtained concerning some drug resistance-related genes such as ATP Binding Cassette G2 (ABCG2) and Lung Resistant Protein (LRP). Our study provides new insights on the role of ANXA1 protein in PCa onset and progression