9 research outputs found

    Modulation of Host Immune Response by Staphylococcus aureus Serine Protease-Like Proteins: Impact on Allergy and Infection

    No full text
    Our modern understanding of the hygiene hypothesis is that bacteria are not only the cause of disease but also essential for a healthy immune response and regulation. Varied microbial exposure prenatally and in early childhood protects us from pathological immune reactions such as autoimmune diseases and allergies. Against this background, the hypothesis that bacteria can act as allergens appears paradoxical. Nevertheless, there is growing evidence that Staphylococcus aureus (S. aureus) is associated with allergic reactions and serine protease-like proteins (Spls) produced by S. aureus have been identified as pacemakers of allergic reactions. To open prospects for treatment or causal therapy in patients at risk, the underlying mechanism of allergy induction by Spls was studied, focusing on the IL-33 pathway in airway inflammation. In a murine asthma model C57BL/6 J wild-type mice were repeatedly exposed to SplD via intratracheal application. After two weeks a Th2-biased inflammatory response was observed in the airways: IL-33 and eotaxin production, eosinophilia, bronchial hyperreactivity, and goblet cell hyperplasia. Blocking IL-33 activity with its soluble receptor ST2 counteracted these effects: significantly decreased numbers of eosinophils, IL-13+ type 2 ILCs, IL-13+CD4+ T cells as well as reduced IL-5 and IL-13 production by lymph node cells were observed. This study indicates that SplD induces allergic airway inflammation via the IL-33/ST2 axis. IL-33 upregulation was not accompanied by cell death, which indicates that IL-33 may not be passively released by dying cells but actively secreted by the airway epithelium. Future identification of the physiological substrates of the Spls may help to shed light on the source of IL-33 in SplD-induced airway inflammation. While the causes of allergy induction by S. aureus Spls were addressed by investigating the underlying mechanism, the consequences of this were also of interest: Does the pro-allergenic response to S. aureus affect patients exposed to S. aureus in their airways? Therefore, the humoral and cellular immune response against Spls was studied in cystic fibrosis (CF) patients who are more frequently colonized with S. aureus than the healthy population and suffer from frequent recurrent airway infections. In this patient cohort a Th2 shift of the Spl-specific immune response became evident, including high Spl-specific serum IgE levels, strong induction of Th2 cell differentiation and production of type 2 cytokines following ex vivo stimulation with recombinant Spls. The observed response seems to be specific for Spls rather than being a general feature of S. aureus proteases since other putative allergens of S. aureus (ScpA, SspB) did not show increased IgE binding in CF sera. The Th2-driven immune response might impede antibacterial clearance and worsen the clinical picture. Larger clinical studies are needed to validate this notion by correlating the anti-S. aureus immune response with clinical parameters and testing new therapy options. These results and findings shed light on a novel, possibly underestimated facet of the immune response against S. aureus and give impetus for further research on bacterial allergens in general, reaching beyond the species S. aureus

    Allergic Reactions to Serine Protease-Like Proteins of Staphylococcus aureus

    No full text
    In cystic fibrosis (CF) infectious and allergic airway inflammation cause pulmonary exacerbations that destroy the lungs. Staphylococcus aureus is a common long-term colonizer and cause of recurrent airway infections in CF. The pathogen is also associated with respiratory allergy; especially the staphylococcal serine protease-like proteins (Spls) can induce type 2 immune responses in humans and mice. We measured the serum IgE levels specific to 7 proteases of S. aureus by ELISA, targeting 5 Spls (76 CF patients and 46 controls) and the staphopains A and B (16 CF patients and 46 controls). Then we compared cytokine release and phenotype of T cells that had been stimulated with Spls between 5 CF patients and 5 controls. CF patients had strongly increased serum IgE binding to all Spls but not to the staphopains. Compared to healthy controls, their Spl-stimulated T cells released more type 2 cytokines (IL-4, IL-5, IL-13) and more IL-6 with no difference in the secretion of type 1- or type 3 cytokines (IFNγ, IL-17A, IL-17F). IL-10 production was low in CF T cells. The phenotype of the Spl-exposed T cells shifted towards a Th2 or Th17 profile in CF but to a Th1 profile in controls. Sensitization to S. aureus Spls is common in CF. This discovery could explain episodes of allergic inflammation of hitherto unknown causation in CF and extend the diagnostic and therapeutic portfolio

    The protease SplB of staphylococcus aureus targets host complement components and inhibits complement-mediated bacterial opsonophagocytosis

    No full text
    Staphylococcus aureus is an opportunistic pathogen that can cause life-threatening infections, particularly in immunocompromised individuals. The high-level virulence of S. aureus largely relies on its diverse and variable collection of virulence factors and immune evasion proteins, including the six serine protease-like proteins SplA to SplF. Spl proteins are expressed by most clinical isolates of S. aureus, but little is known about the molecular mechanisms by which these proteins modify the host's immune response for the benefit of the bacteria. Here, we identify SplB as a protease that inactivates central human complement proteins, i.e, C3, C4, and the activation fragments C3b and C4b, by preferentially cleaving their a-chains. SplB maintained its proteolytic activity in human serum, degrading C3 and C4. SplB further cleaved the components of the terminal complement pathway, C5, C6, C7, C8, and C9. In contrast, the important soluble human complement regulators factor H and C4b-binding protein (C4BP), as well as C1q, were left intact. Thereby, SplB reduced C3b-mediated opsonophagocytosis by human neutrophils as well as C5b-9 deposition on the bacterial surface. In conclusion, we identified the first physiological substrates of the S. aureus extracellular protease SplB. This enzyme inhibits all three complement pathways and blocks opsonophagocytosis. Thus, SplB can be considered a novel staphylococcal complement evasion protein. IMPORTANCE The success of bacterial pathogens in immunocompetent humans depends on the control and inactivation of host immunity. S. aureus, like many other pathogens, efficiently blocks host complement attack early in infection. Aiming to understand the role of the S. aureus-encoded orphan proteases of the Spl operon, we asked whether these proteins play a role in immune escape. We found that SplB inhibits all three complement activation pathways as well as the lytic terminal complement pathway. This blocks the opsonophagocytosis of the bacteria by neutrophils. We also clarified the molecular mechanisms: SplB cleaves the human complement proteins C3, C4, C5, C6, C7, C8, and C9 as well as factor B but not the complement inhibitors factor H and C4BP. Thus, we identify the first physiological substrates of the extracellular protease SplB of S. aureus and characterize SplB as a novel staphylococcal complement evasion protein

    Staphylococcus aureus Alpha-Toxin Limits Type 1 While Fostering Type 3 Immune Responses.

    Get PDF
    Staphylococcus aureus can cause life-threatening diseases, and hospital- as well as community-associated antibiotic-resistant strains are an emerging global public health problem. Therefore, prophylactic vaccines or immune-based therapies are considered as alternative treatment opportunities. To develop such novel treatment approaches, a better understanding of the bacterial virulence and immune evasion mechanisms and their potential effects on immune-based therapies is essential. One important staphylococcal virulence factor is alpha-toxin, which is able to disrupt the epithelial barrier in order to establish infection. In addition, alpha-toxin has been reported to modulate other cell types including immune cells. Since CD4+ T cell-mediated immunity is required for protection against S. aureus infection, we were interested in the ability of alpha-toxin to directly modulate CD4+ T cells. To address this, murine naïve CD4+ T cells were differentiated in vitro into effector T cell subsets in the presence of alpha-toxin. Interestingly, alpha-toxin induced death of Th1-polarized cells, while cells polarized under Th17 conditions showed a high resistance toward increasing concentrations of this toxin. These effects could neither be explained by differential expression of the cellular alpha-toxin receptor ADAM10 nor by differential activation of caspases, but might result from an increased susceptibility of Th1 cells toward Ca2+-mediated activation-induced cell death. In accordance with the in vitro findings, an alpha-toxin-dependent decrease of Th1 and concomitant increase of Th17 cells was observed in vivo during S. aureus bacteremia. Interestingly, corresponding subsets of innate lymphoid cells and γδ T cells were similarly affected, suggesting a more general effect of alpha-toxin on the modulation of type 1 and type 3 immune responses. In conclusion, we have identified a novel alpha-toxin-dependent immunomodulatory strategy of S. aureus, which can directly act on CD4+ T cells and might be exploited for the development of novel immune-based therapeutic approaches to treat infections with antibiotic-resistant S. aureus strains

    Specific serum IgG at diagnosis of Staphylococcus aureus bloodstream invasion is correlated with disease progression.

    Get PDF
    Although Staphylococcus aureus is a prominent cause of infections, no vaccine is currently available. Active vaccination relies on immune memory, a core competence of the adaptive immune system. To elucidate whether adaptive immunity can provide protection from serious complications of S. aureus infection, a prospective observational study of 44 patients with S. aureus infection complicated by bacteremia was conducted. At diagnosis, serum IgG binding to S. aureus extracellular proteins was quantified on immunoblots and with Luminex-based FLEXMAP 3D™ assays comprising 64 recombinant S. aureus proteins. Results were correlated with the course of the infection with sepsis as the main outcome variable. S. aureus-specific serum IgG levels at diagnosis of S. aureus infection were lower in patients developing sepsis than in patients without sepsis (P<0.05). The pattern of IgG binding to eight selected S. aureus proteins correctly predicted the disease course in 75% of patients. Robust immune memory of S. aureus was associated with protection from serious complications of bacterial invasion. Serum IgG binding to eight conserved S. aureus proteins enabled stratification of patients with high and low risk of sepsis early in the course of S. aureus infections complicated by bacteremia

    Staphylococcal serine protease-like proteins are pacemakers of allergic airway reactions to Staphylococcus aureus.

    Get PDF
    A substantial subgroup of asthmatic patients have "nonallergic" or idiopathic asthma, which often takes a severe course and is difficult to treat. The cause might be allergic reactions to the gram-positive pathogen Staphylococcus aureus, a frequent colonizer of the upper airways. However, the driving allergens of S aureus have remained elusive

    The IL-33/ST2 axis is crucial in type 2 airway responses induced by Staphylococcus aureus-derived serine protease-like protein D

    No full text
    Background: Chronic airway inflammatory diseases, such as chronic rhinosinusitis with nasal polyps and asthma, show increased nasal Staphylococcus aureus colonization. Staphylococcus aureus-derived serine protease-like protein (Spl) D and other closely related proteases secreted by S aureus have recently been identified as inducers of allergic asthma in human subjects and mice, but their mechanism of action is largely unknown. Objective: We investigated the role of recombinant SplD in driving T-H(2)-biased responses and IgE formation in a murine model of allergic asthma. Methods: Allergic asthma was induced in C57BL/6 J wild-type mice, Toll-like receptor (TLR) 4 knockout (Tlr4(-/-)) mice, and recombination-activating gene (Rag2) knockout (Rag2(-/-)) mice by means of repeated intratracheal applications of SplD. Inflammatory parameters in the airways were assessed by means of flow cytometry, ELISA, Luminex, and immunohistochemistry. Serum SplD-specific IgE levels were analyzed by using ELISA. Results: We observed that repeated intratracheal exposure to SplD led to IL-33 and eotaxin production, eosinophilia, bronchial hyperreactivity, and goblet cell hyperplasia in the airways. Blocking IL-33 activity with a soluble ST2 receptor significantly decreased the numbers of eosinophils, IL-13(+) type 2 innate lymphoid cells and IL-13(+) CD4(+) T cells and IL-5 and IL-13 production by lymph node cells but had no effect on IgE production. SplD-induced airway inflammation and IgE production were largely dependent on the presence of the functional adaptive immune system and independent of TLR4 signaling. Conclusion: The S aureus-derived protein SplD is a potent allergen of S aureus and induces a T-H(2)-biased inflammatory response in the airways in an IL-33-dependent but TRL4-independent manner. The soluble ST2 receptor could be an efficient strategy to interfere with SplD-induced T-H(2) inflammation but does not prevent the allergic sensitization
    corecore