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Staphylococcal serine protease–like proteins
are pacemakers of allergic airway reactions
to Staphylococcus aureus
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Background: A substantial subgroup of asthmatic patients have
‘‘nonallergic’’ or idiopathic asthma, which often takes a severe
course and is difficult to treat. The cause might be allergic
reactions to the gram-positive pathogen Staphylococcus aureus,
a frequent colonizer of the upper airways. However, the driving
allergens of S aureus have remained elusive.
Objective: We sought to search for potentially allergenic
S aureus proteins and characterize the immune response
directed against them.
Methods: S aureus extracellular proteins targeted by human
serum IgG4 were identified by means of immunoblotting to
screen for potential bacterial allergens. Candidate antigens were
expressed as recombinant proteins and used to analyze the
established cellular and humoral immune responses in healthy
adults and asthmatic patients. The ability to induce a type 2
immune response in vivo was tested in a mouse asthma model.
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Results: We identified staphylococcal serine protease–like
proteins (Spls) as dominant IgG4-binding S aureus proteins.
SplA through SplF are extracellular proteases of unknown
function expressed by S aureus in vivo. Spls elicited IgE
antibody responses in most asthmatic patients. In healthy S
aureus carriers and noncarriers, peripheral blood T cells
elaborated TH2 cytokines after stimulation with Spls, as is
typical for allergens. In contrast, TH1/TH17 cytokines, which
dominated the response to S aureus a-hemolysin, were of low
concentration or absent. In mice inhalation of SplD without
adjuvant induced lung inflammation characterized by TH2
cytokines and eosinophil infiltration.
Conclusion: We identify Spls as triggering allergens released by
S aureus, opening prospects for diagnosis and causal therapy of
asthma. (J Allergy Clin Immunol 2016;nnn:nnn-nnn.)

Key words: Asthma, IgE, Staphylococcus aureus, serine protease-
like proteins, type 2 inflammation

Asthma is one of the most common chronic diseases, affecting
about 300 million patients worldwide.1 Two forms can be distin-
guished. About 90% of patients have allergic (exogenous)
asthma, and 10% have so-called nonallergic (endogenous)
asthma, also known as idiopathic or intrinsic asthma; however,
nonallergic asthma becomes more frequent with disease severity.
The 2 disease forms share many features, such as increased
serum IgE concentrations, TH2 cytokine levels, and eosinophil
infiltration in the lung. However, the defining feature of
idiopathic nonallergic asthma is the lack of allergen-specific
IgE and TH2 responses to known inhalation allergens, which are
the causative agents of allergic asthma.2,3 Intrinsic asthma is
typically late onset, beginning in the third or fourth decade of
life, and often associated with chronic rhinosinusitis,4 and it
tends to take a severe disease course. It is often difficult to treat
because patients do not respond well to standard antiallergic
therapies. The triggering agents of intrinsic asthma have remained
elusive.

Staphylococcus aureus is an important infectious agent in hos-
pitals and in the community, but the microorganism is also a
frequent colonizer of the upper respiratory tract.5,6 In addition,
these bacteria are being discussed as possible promoters of
TH2-biased immune reactions, including intrinsic asthma.2,7,8

Up to 87% of patients with intrinsic asthma are colonized by
this microorganism in the upper airways,9 which is in contrast
to 20% of healthy adults.6,10 Moreover, IgE antibodies specific
for S aureus enterotoxins, also known as superantigens, have
1
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Abbreviations used
APC: A
llophycocyanin
BALF: B
ronchoalveolar lavage fluid
FITC: F
luorescein isothiocyanate
Hla: S
taphylococcus aureus a-hemolysin
OVA: O
valbumin
PE: P
hycoerythrin
PerCP: P
eridinin-chlorophyll-protein complex
SEB: S
taphylococcal enterotoxin B
Spl: S
taphylococcal serine protease–like protein
TCM: T
issue culture medium
recently been described in a group of patients with severe
asthma.11,12 S aureus superantigens are a unique group of
virulence factors with potent mitogenic activity on T cells.13,14

Hence it is plausible that they increase a pre-existing TH2 bias
and exacerbate chronic allergic inflammation. However, whether
they are the triggering allergens is not known.

To identify factors capable of inducing allergic reactions, we
systematically analyzed the human immune memory of proteins
released by S aureus. A hallmark of allergic reactions is the
production of allergen-specific antibodies of the IgE class.15,16

Their generation depends on the action of specialized TH2
cells.17,18 Because IgE is usually present at very low
concentrations, we used the more abundant IgG4 subclass as a
surrogate marker for a potential TH2-driven immune response
to S aureus proteins. The production of both antibody classes is
dependent on IL-4, a cytokine elaborated by TH2 cells,18-21 and
IgG4-producing B cells can switch to IgE production in response
to repeated allergen contact.22 In contrast to IgG4, the main effect
of which is to block antigen function, IgG1, the most abundant
antibody subclass in serum, fosters inflammation through
activation of the complement system and binding to specific
receptors on immune cells.19,23

We found that the strongest and most frequent TH2-related
immune response was elicited by staphylococcal serine
protease–like proteins (Spls), a group of 6 secreted bacterial
proteases of hitherto unknown function in pathogen-host
interaction.24 In mice repeated intratracheal applications of
recombinant SplD without adjuvant elicited allergic lung inflam-
mation, production of SplD-specific IgE, and a TH2 cytokine
response in the local draining lymph nodes. Moreover,
Spl-specific IgE antibodies were found in most asthmatic patients
but only in a minority of healthy subjects. We propose that Spls of
S aureus are potent inducers of allergic reactions.
METHODS
A more detailed description of the methods used in this study can be

found in the Methods section in this article’s Online Repository at www.

jacionline.org.
Human subjects
Blood samples and nasal swabs were obtained from a cohort of 16 S aureus

carriers and 16 noncarriers previously described by Holtfreter et al25 (SH

plasma). Carriers were defined by 2 consecutive S aureus–positive nasal swabs

with a time difference of at least 6 months, whereas noncarriers had negative

results twice. These plasma sampleswere used to determine overall IgG4 bind-

ing to extracellular S aureus proteins (Simple Western Assay; ProteinSimple,
San Jose, Calif). Moreover, 50 asthmatic patients and 40 nonasthmatic control

subjects were recruited for this study. Participants with asthma reported a

previous asthma diagnosis and had a history of either wheezing, shortness

of breath, or waking at night with breathlessness within the previous

12months. Asthmatic patients had an average age of 47.26 16.6 years (range,

17-76 years), and control subjects had an average age of 22.2 6 2.2 years

(range, 19-27 years). Both groups differed significantly in age (P < .001).

Control subjects were classified as follows: 2 nasal swabs were obtained

with a time difference of at least 2 months. Seventeen subjects were colonized

by S aureus on both occasions and classified as carriers; 23 subjects were

noncarriers. Healthy subjects with a single S aureus–positive nasal swab

were excluded from the analysis.

Nasal polyp tissue samples were obtained at the Department of

Otorhinolaryngology, Ghent University Hospital, Belgium, during routine

endonasal sinus surgery. The diagnosis of chronic rhinosinusitis with nasal

polyps was based on history, clinical examination, nasal endoscopy, and

computed tomography of the paranasal cavities. All patients stopped the oral

application of corticosteroids for at least 3 months before surgery. Approval of

the local ethics committees in Greifswald and Ghent was obtained. All

participants provided informed consent.
S aureus protein extracts and immunoblotting
Extracellular S aureus proteins were extracted from bacterial culture

supernatants, and 1-dimensional immunoblotting was performed by using

an automated capillary-based blotting system (Simple Western Assay,

ProteinSimple), as previously described.26 Two-dimensional immunoblotting

was performed to visualize binding of serum IgG1 and IgG4 to proteins of the

colonizing S aureus isolates.
Protein identification
Bacterial proteins were identified by using mass spectrometry.
Recombinant proteins
Recombinant staphylococcal proteins were generated, as described in the

Methods section in this article’s Online Repository.
Human T-cell stimulation assay
Blood was drawn from healthy volunteers who had provided informed

consent and anticoagulated with EDTA, and PBMCs were isolated from

100 mL of blood. Adherent feeder cells and T cells were purified and

incubated with recombinant S aureus antigens (LPS concentration in stimula-

tion assays with S aureus a-hemolysin [Hla], 5.33 EU/mL) for 9 days, and

cytokine concentrations were determined in the cell culture supernatants.
ELISA
Ninety-six-well plates were coated with recombinant S aureus antigens and

washed, and free binding sites were saturated with blocking buffer (10% FCS

in PBS). Human serum was serially diluted 1:5 in blocking buffer

beginning with 1:50 and added to the wells to measure IgG1 and IgG4 levels.

After washing, this was followed by incubation with the appropriate

peroxidase-conjugated secondary antibody and washed. Substrate was added,

and absorption was measured in duplicates; the antigen-specific antibody titer

(AU) was determined, as described in the Methods section in this article’s

Online Repository.

For measuring IgE levels, the process was adapted as follows:

human or murine serum was diluted 1:5 in blocking buffer. Biotin-

conjugated mouse anti-human IgE or rat anti-murine IgE antibodies were

used in combination with peroxidase-conjugated streptavidin to detect

antibody binding. Single OD measurements were performed at 450 nm,

and the blank value in the absence of serum was multiplied by 1.5 and

subtracted.
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Luminex-based assay of Spl-specific IgG in nasal

polyp tissue
Spl-specific IgG was detected with a FLEXMAP 3D (Luminex, Austin,

Tex) sandwich assay of nasal polyp suspensions. Recombinant proteins with

N-terminal His-tags (SplA, SplB, SplD, and the control proteins GroEL,

SodA, and PurA) were overexpressed inEscherichia coliBL21 and coupled to

beads, and binding of IgG from nasal polyp suspensions was assayed, as

previously described.27
Human sinonasal ex vivo tissue-cube fragment

stimulation assay
Fresh tissue fragments of human nasal polyps of patients with chronic

rhinosinusitiswere suspended in tissue culturemedium (TCM) in48-well plates.

Individual wells received either nothing (TCM), SplD, or the S aureus superan-

tigen staphylococcal enterotoxinB(SEB)asa stimulationcontrol.After24hours

of culture, supernatants were assayed for IL-5, IL-17, INF-g, and TNF-a.
Murine asthma model
Animal experiments were approved by the Institutional Animal Ethics

Committee of Ghent University. Specific pathogen-free female wild-type

C57BL/6 JO mice were purchased from Harlan Laboratories (Indianapolis,

Ind), and sentinel animals were regularly tested for the presence of S aureus, al-

ways with negative results. At the age of 7 to 8 weeks, mice were anesthetized

with isoflurane/air. Fifty microliters of PBS per mouse or PBS containing either

ovalbumin (OVA; 2 mg/mL; Worthington, Lakewood, NJ) or purified SplD

(0.9 mg/mL) was instilled into the trachea. These applications were repeated 6

times on alternate days, according to an established protocol.28 On day 14, mice

were killed bymeans of a lethal intraperitoneal injection ofNembutal (Ceva Sante

Animale, Brussels, Belgium). The investigators performing data analysis were

blinded to group allocations and experimental treatment. The required experi-

mental sample size and archived power were calculated based on the preliminary

experiments by using G*Power 3.1.5 software (a5 .05, power5 0.848).29
Bronchoalveolar lavage, lung digestion, and

phenotypic analysis
Bronchoalveolar lavage and lung digestion were performed in the experi-

mental animals, as described previously,30 and cells were used for the prepara-

tion of cytospins and flow cytometry. For flow cytometric analysis of themurine

lungs and bronchoalveolar lavage fluid (BALF), the following antibodies were

used: GR1–fluorescein isothiocyanate (FITC), CD11b–peridinin-chlorophyll-

protein complex (PerCP)-Cy5.5, CD8a-PerCP, CD4-FITC, CD25–allophyco-

cyanin (APC), CD3–phycoerythrin (PE), CD16/CD32 purified (all from

eBioscience, Vienna, Austria), Siglec-F–PE (Miltenyi Biotec, Leiden, The

Netherlands), and CD11c–PE-Cy7 (BDBiosciences, Erembodegem, Belgium).
In vitro murine T-cell restimulation assay
Peribronchial lymph nodes were explanted from the mice and dissected,

and a single-cell suspension was prepared, as described previously.28

Ninety-six-well microtiter plates were coated with anti-CD3 antibodies

(2 mg/mL, 145-2C11, eBioscience) for 2 hours at 378C. After the removal

of unbound anti-CD3, 2 3 106 cells were plated into each well with 200 mL

of RPMI-1640 media (Gibco, Carlsbad, Calif) containing anti-CD28

antibodies (1 mg/mL, clone 37.51, eBioscience), antibiotics, 10% FCS, and

L-glutamine. Cells were cultured for 5 days at 378C in 5%CO2 in a humidified

incubator. Supernatants were collected, and concentrations of IL-4, IL-5, and

IL-13 were determined by using a Luminex-based technique (R&D Systems,

Abingdon, United Kingdom).
Antibodies and reagents
TheMethods section in this article’s Online Repository contains a list of the

antibodies used in this work.
Statistics
Statistical analysis was performed with GraphPad Prism 6.0 software

(GraphPad Software, La Jolla, Calif). Data sets were tested for

Gaussian distribution by using D’Agostino-Pearson analysis. The unpaired

nonparametric Mann-Whitney test was used for comparison of 2 groups,

showing non-Gaussian distribution, and the Kruskal-Wallis test with the Dunn

multiple comparison test was used for comparison of more than 2 groups,

showing non-Gaussian distribution. For the effects of SplD in the airway tissue

culture model, the Wilcoxon signed-rank test was used.
RESULTS

The dominant IgG4-binding S aureus proteins were

identified as Spls
By using 1-dimensional immunoblotting, varying amounts of S

aureus–specific IgG4 were found in the plasma of healthy adults,
with a similar prevalence in S aureus carriers and noncarriers
(Fig 1, A). A band of 34 kDa was observed in all reacting persons
(Fig 1, B).

Five S aureus carriers were selected, the colonizing S aureus
strains were obtained, and serum IgG4 binding to the extracellular
bacterial proteomes was analyzed by using 2-dimensional
immunoblotting to identify the corresponding S aureus proteins.
IgG4 responses differed greatly in intensity between subjects,
but spots with strong IgG4 signals were located in areas
containing S aureus serine protease–like proteins (Spls),
members of a group of 6 proteases (SplA-SplF) encoded in 1
operon in the S aureus genome (see Fig E1 in this article’s Online
Repository at www.jacionline.org).31 Because many known
allergens are proteases, we generated 4 Spls (SplA, SplB, SplD,
and SplE) of S aureus strain USA 300 as recombinant proteins
to study the immune response directed against them. SplD and
SplF share 93% amino acid sequence identity, and therefore
only SplD was selected. SplC was not expressed in sufficient
amounts. Hla served as a control.

Analysis of specific IgG1- and IgG4-binding titers in serum of
40 healthy subjects revealed that, when compared with Hla, the
antibody response to Spls was strongly skewed toward IgG4

(Fig 1, C, and see Fig E2 in this article’s Online Repository at
www.jacionline.org).
T cells respond to Spls with a TH2 cytokine profile in

healthy adults
The quality of the T-cell response to Spls was studied in 9 blood

donors. Cytokine profiles elicited by Spls differed markedly from
Hla. Although the response to Hla was dominated by TH1/TH17
cytokines (IFN-g, IL-17, IL-6, and TNF), as is typical of S aureus
antigens,32,33 these cytokines were released only in very low
amounts when T cells were stimulated with Spls (see Fig E3, A,
in this article’s Online Repository at www.jacionline.org). In
contrast, Spls elicited more TH2 cytokines (IL-4, IL-5, and
IL-13) than did Hla. IL-10 was induced by all S aureus factors
in similar amounts (see Fig E3, B). Because the frequency of
peripheral blood T cells reacting to a single S aureus antigen
ranges from 4 to more than 4000 per million T cells in healthy
subjects,33 ratios between levels of TH2 cytokines and IFN-g
were calculated to give an impression of the pronounced TH2
bias in the T-cell response to the Spls (Fig 2). Aminority of donors
showed neither IL-5 nor IL-4 secretion after Spl stimulation. Even
though in these experiments Hla was expressed in E coli and the

http://www.jacionline.org
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FIG 1. Strong serum IgG4 binding to S aureus Spls in S aureus carriers and noncarriers. A, Plasma IgG4

binding to S aureus extracellular proteins in S aureus carriers and noncarriers. B, Typical IgG4-binding

profiles: (1) no S aureus–reactive IgG4 (green), (2) a single band of IgG4 binding (blue), and (3) IgG4 with

specificity for several S aureus proteins (gray). A 34-kDa band (arrow)was observed in all positive samples.

C, IgG4 binding to Spls was increased in comparison with Hla (gray shading). Medians and interquartile

ranges are indicated. **P < .01 and ***P < .001.
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Spls were expressed in the gram-positive bacterium Bacillus
subtilis, LPS can be excluded as a reason for the differential
T-cell response elicited byHla and Spls. First, LPSwas rigorously
depleted from the recombinant protein preparations, and second,
a preliminary experiment with E coli–derived Spls and Hla with
similar LPS contamination produced the same results (data not
shown).
IgE binding to Spls in healthy adults and patients
Because the adaptive immune response to Spls was markedly

skewed toward TH2 in healthy subjects, we asked whether atopic
subjects might have allergic reactions to these proteins.
Spl-specific IgE levels were measured in the sera of asthmatic
patients and healthy adults and found to be significantly increased
in the sera of asthmatic patients (Fig 3). A minority of healthy
adults also showed Spl-specific IgE, with no difference in
amounts of Spl-specific IgE between S aureus carriers and
noncarriers (data not shown).
Spls and Spl-reactive cells are present in the human

airway mucosa (nasal polyps)
Thus far, the analysis has been confined to the systemic

immune response to Spls. In an attempt to elucidate under which
conditions Spls are expressed locally in the airway mucosa, we
performed a proteomics screen for Spls in nasal polyp tissue of
S aureus carriers. The majority of patients with nasal polyps are
colonized by S aureus, and data from Bachert and colleagues9,11

clearly demonstrate that colonization is an independent predictor
of asthma development, which in these patients is usually of late
onset, not caused by the typical inhalant allergens characterizing
allergic asthma, and difficult to treat. Hence nasal polyp tissue
provided us with an opportunity to analyze the local S aureus pro-
tein expression and immune reaction in a relevant cohort. Nano-
scale liquid chromatography tandem mass spectrometry analysis
revealed the presence of peptides of SplD and SplF in 2 of 6 nasal
polyp samples analyzed (see Fig E4, A, in this article’s Online Re-
pository at www.jacionline.org). Furthermore, all 6 tissue extracts
contained IgG binding to proteases SplB and SplD/F, whereas
SplA-specific IgGwas found in 4 of the 6 tissue extracts, confirm-
ing that Spls were produced in vivo (see Fig E4, B).

Next, the local cytokine response was examined in an ex vivo
tissue culture model. Tissue cubes were cut from nasal polyps
and stimulated in culture with SplD or the S aureus superantigen
SEB. As expected, the potent T-cell mitogen SEB induced
significant amounts of IL-5, IL-17, INF-g, and TNF-a at a low
concentration (0.1 mg/mL). SplD was able to increase IL-5
production to the same extent as SEB, although at higher
concentrations (Fig 4, A). IL-17 and INF-g release was also
significantly augmented by SplD, although to a much lower
degree than that observed with SEB (Fig 4, B and C). SplD did
not induce TNF-a (Fig 4, D). Hence, in comparison with SEB,
the cytokine response elicited to SplD in the human airway tissue
model was shifted toward a TH2 profile.
Intratracheal application of SplD triggers allergic

lung inflammation in mice
To answer the crucial question of whether Spls can cause

allergy, we turned to a mouse allergy model. SplD was selected as
a potential triggering antigen in this system because it has the
broadest target specificity of the 3 Spls (SplA, SplB, and SplD),
the sequence motifs of which for substrate cleavage have been

http://www.jacionline.org


FIG 2. TH2 cytokine profile in Spl-specific human T cells. Spl-reactive T cells of healthy volunteers

responded with a TH2 bias compared with Hla, which was most pronounced when stimulated with SplA

and SplE. Cytokine concentrations in cell culture supernatants are expressed as ratios of the respective

TH2 cytokine to IFN-g. Medians are indicated by gray bars. *P < .05, **P < .01, and ***P < .001.

FIG 3. Increased IgE binding to Spls in asthmatic patients. Serum IgE binding to SplA, SplB, SplD, and SplE

was determined by using ELISA. Asthmatic patients (n 5 50) had significantly more Spl-specific IgE than

healthy adults (n 5 40). Medians and interquartile ranges are depicted. *P < .05 and ***P < .001.
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FIG 4. Effect of SplD on cytokine release in an airway TCM. Human nasal polyp tissue cubes were incubated

with SplD and SEB (n5 7). SplD induced similar concentrations of IL-5 (A) but much less IL-17 (B) and IFN-g

(C) than did the superantigen SEB. TNF-a was not induced by SplD (D). Box-and-whisker plots show mini-

mum and maximum values, lower and upper quartiles, and medians. *P < .05 and **P < .01, respective bar

versus TCM.

J ALLERGY CLIN IMMUNOL

nnn 2016

6 STENTZEL ET AL
described, and was identified in the nasal polyp samples (see Fig
E4, A, in this article’s Online Repository at www.jacionline.
org).34-36 Repeated intratracheal application of SplD in mice
resulted in allergic lung inflammation after 2 weeks. This was
characterized by a strong eosinophilic infiltration in the lung
tissue and BALF, as well as neutrophil and T-cell accumulation
in the BALF. Control animals treated with buffer (PBS) or the
protein OVA did not have lung inflammation (Fig 5, A-E).
Moreover, intratracheal application of SplD resulted in
production of SplD-specific serum IgE (Fig 5, F), whereas OVA
treatment did not induce anti-OVA IgE (data not shown).
Immune cells accumulated in the lung-draining lymph nodes
(Fig 5, E); stimulation of those cells with anti-CD3 and anti-
CD28 antibodies induced a TH2 cytokine release pattern in the
SplD-exposed group but not in animals treated with PBS or
OVA (Fig 5, G-I).
DISCUSSION
A systematic search for bacterial allergens was performed to

elucidate the possible role of S aureus as a causative agent of
asthma. Taking IgG4 binding as a lead, the S aureus proteases
SplA to SplF were identified as promising candidates. Analysis
of the natural human immune reaction to recombinant Spls in
healthy subjects confirmed the strong IgG4 bias.

Spl-specific memory T cells elaborated IL-4, IL-5, and IL-13,
as well as the anti-inflammatory cytokine IL-10, whereas amounts
of IFN-g, IL-6, TNF, and IL-17 were conspicuously low. This
corresponds to a TH2 profile, the hallmark of the immune
reaction to allergens. IL-4 and IL-13 drive immunoglobulin
class-switching to IgE.16,20 In fact, most asthmatic patients, as
well as a minority of nonsymptomatic adults, had Spl-specific
IgE antibodies in their serum. SplD and SplF proteins were
found in the human airway mucosa, showing that the spl operon
is active locally. Anti-Spl antibodies and cells able to elaborate
a TH2 cytokine profile were also present in the upper respiratory
system.

Not all healthy blood donors had specific IgG4 or a TH2
cytokine profile in response to Spls, and only aminority generated
specific anti-Spl IgE. This could be explained by the
predisposition of the subject. Around 30% to 40% of the
population in the industrialized world are atopic (ie, prone to react
to antigenic stimuli with type 2 inflammation).37 Another reason
for a different reaction to the Spls might be the history of exposure
to S aureus, andmoreover, only 80%of the S aureus strains harbor
Spl genes. In patients with nasal polyps, for example, inflamed
mucosal tissues are exposed to S aureus at high density over
long periods of time. In addition, viral exposure might
facilitate bacterial invasion or antigen entry by causing epithelial
damage.

In mice inhalation of SplD alone induced allergic airway
inflammation and production of SplD-specific IgE and
memory TH2 cells in the lung-draining lymph nodes. Together,
this makes a strong case for Spls being prominent allergens of
S aureus.

In contrast to SplD, inhalation of pure OVA did not trigger lung
inflammation. In the commonly used murine OVA asthma model,
priming of the immune response by means of injection of OVA
with the adjuvant aluminum hydroxide is required to turn OVA
into an inhalation allergen.38 Hence inhalation of purified
SplD appears to be a superior mouse model of asthma.
Importantly, it supports the concept of Spls as pacemakers of
allergic reactions to S aureus.

The finding that some S aureus proteins can cause allergic
responses is remarkable because the natural adaptive immune
response to the microorganism is dominated by a TH1/TH17

http://www.jacionline.org
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FIG 5. Allergic lung inflammation in mice after intratracheal SplD application. A-F, Intratracheal application

of SplD, but not OVA, induced eosinophil infiltration in the lungs (Fig 5, A), eosinophils (Fig 5, B), T cells

(Fig 5, C), and neutrophils (Fig 5, D) in BALF, as well as SplD-specific serum IgE (Fig 5, F). Treatment with

OVA did not induce OVA-specific IgE (data not shown). E-I, Peribronchial lymph node cells (Fig 5, E) released

TH2 cytokines (Fig 5, G-I) when stimulated with anti-CD3 and anti-CD28 antibodies (aCD3/CD28). P < .05,

*SplD versus PBS and #SplD versus OVA; P < .01, **SplD versus PBS and ##SplD versus OVA; P < .001,

***SplD versus PBS and ### SplD versus OVA.
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profile.32,33 Hla is a typical antigen in this respect,33,39,40 as has
been corroborated in the present study. IL-17 is essential for
bacterial clearance in mice and human subjects.41-44 Patients
with genetic defects impairing the TH17 response have recurrent
severe S aureus infections.45-48 Hence deviation of the immune
response away from a TH1/TH17 and toward a TH2/regulatory
T-cell profile can favor bacterial persistence and growth.

In fact, S aureus commands additional nonspecific means of
fostering a TH2-type immune response. The microorganism
produces d-toxin, which triggers mast cell degranulation, a
central allergic effector mechanism.49 Superantigens, a group of
23 S aureus virulence factors, can activate large portions of the
T-cell population, irrespective of antigen specificity and effector
function.14,50 In patients with chronic airway disease, they
would be expected to exacerbate and maintain allergic
inflammation.2,12,51 Finally, release of proteases, as well as the
pore-forming toxin a-hemolysin, can cause epithelial barrier
dysfunction, facilitating allergen entry and allergy development,
as has been demonstrated in the skin.52-54 However, barrier
disruption alone cannot explain allergic sensitization, because
a-hemolysin, for example, is a strong inducer of TH1/
TH17 cells, counteracting allergy.39,40 Whether Spls contribute
to S aureus–mediated epithelial barrier failure remains to be
determined. However, Spls, being recognized by T and B cells
through the specific antigen receptors, as we show here, might
have a special part in a concerted immune evasion strategy of
S aureus, complementing the described general proallergenic
mechanisms.

The 6 Spl proteases are encoded in different combinations by a
single operon, which is present in around 80% of S aureus clinical
isolates.55 Spls have signal sequences56 and belong to the most
abundant proteins in S aureus cell culture supernatants (data no
shown). The fact that Spls could be identified by using mass spec-
trometry in nasal polyp tissue, in the presence of few bacteria and
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a vast excess of host proteins, is in line with this observation
because only the most abundant bacterial proteins can be detected
directly ex vivo. SplA to SplF share much sequence similarity, and
the 3 amino acids constituting the proteolytic triad are conserved
between them, suggesting that protease function might be
important.31 Spls have individual and very restricted protease
activity, supporting the idea of targeting selected proteins
important in pathogen-host interaction rather than only
performing general protein breakdown for bacterial nutri-
tion.34-36,56 We propose that Spls, either individually or in
concert, can damage epithelial barriers, modulate the response
of antigen-presenting cells, or both. We further reason that it
might be important that Spls are released by S aureus in
substantial amounts as soluble proteins, sequestering them from
the S aureus cells and thereby from the adjuvant activity of the
bacterial particles, which drive a TH1/TH17 response with the
potential to override Spl effects.

Many bacteria secrete proteases, which are implicated in host
protein breakdown for nutrient acquisition. The discovery of the
allergenic nature of S aureus Spls raises the question of
whether immune deviation from a protective TH1/TH17 immune
response might represent an additional function of bacterial
proteases. It could be a general mechanism by which bacteria,
similar to the fungus Aspergillus fumigatus, a known airway
allergen,57 manipulate the local immune response to their
advantage.

This study is limited by the screening strategy. The most
straightforward approach to defining the S aureus allergome
would have been a comprehensive survey of IgE-binding bacte-
rial proteins. However, this proved to be impossible because of
the very low serum IgE concentrations. Therefore IgG4 binding
was used as a proxy.

Another point of concern is the restriction of the analysis to
bacterial proteins with the strongest IgG4 binding on immuno-
blots, namely the Spls. The potential allergenic nature of S aureus
proteins with weaker IgG4 binding remains to be addressed.

Other shortcomings are our inability to produce recombinant
SplC and the fact that only one of the 6 Spls has been examined in
the mouse asthma model. Moreover, the individual Spls appear to
have slightly different functions: in human subjects SplA and
SplE induced the highest levels of type 2 cytokines, whereas
antibody binding was strongest to SplB and SplD. This cannot be
explained at present because the protease substrates of the Spls
are not known and the molecular mechanisms of action remain to
be determined.

Before the current study, a systematic survey of potentially
allergenic S aureus proteins had never been conducted. Here we
show that Spls of S aureus have allergenic properties because
they can induce IgG4/IgE antibodies in human subjects, elicit a
type 2 immune pattern of cytokines in human airway tissue, and
can be detected in human airway mucosa obviously released
from intramucosal microorganisms. Moreover, SplD without
adjuvants elicited type 2 inflammation inmouse lungs. Our results
provide clues to the understanding of severe airway inflammation,
and they open new avenues toward diagnosis and causal therapy
of asthma.

We thank Falko Hochgr€afe and Erik Richter for their support with protein

purification, Gabriele Holtappels for expert technical assistance, and Silva

Holtfreter for helpful discussion.
Key messages

d Spls elicit TH2 immune responses in human subjects and
specific IgE in asthmatic patients.

d SplD without adjuvant is capable of inducing type 2
inflammation and IgE in a mouse asthma model.

d The identification of Spls as allergens of S aureus might
open new avenues for the diagnosis and treatment of
asthma.
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METHODS

Human subjects
Blood samples and nasal swabs were obtained from a cohort of 16 S aureus

carriers and 16 noncarriers previously described by Holtfreter et al.E1

Moreover, 50 asthmatic patients and 40 nonasthmatic control subjects were

recruited for this study. Participants with asthma reported a previous asthma

diagnosis and had a history of either wheezing, shortness of breath, or

waking at night with breathlessness within the previous 12 months.

Asthmatic patients had an average age of 47.2 6 16.6 years (range,

17-76 years), and control subjects had an average age of 22.4 6 2.2 years

(range, 19-27 years). Two nasal swabs were obtained with a time difference

of at least 2 months. Twenty-three subjects were colonized by S aureus on

at least 1 occasion and classified as carriers; 23 subjects were noncarriers.

Approval of the local ethics committeewas obtained. All participants provided

informed consent.

Nasal polyp tissue samples were obtained at the Department of

Otorhinolaryngology, Ghent University Hospital, Belgium, during routine

endonasal sinus surgery. The diagnosis of chronic rhinosinusitis with nasal

polyps was based on history, clinical examination, nasal endoscopy, and

computed tomography of the paranasal cavities. All patients stopped the oral

application of corticosteroids for at least 3 months before surgery. The study

was approved by the local ethics committee. All patients provided written

informed consent before collecting material.

S aureus protein extracts and immunoblotting
Extracellular S aureus proteins were extracted from bacterial culture

supernatants, as previously described.E2 In short, for 1-dimensional

immunoblots, a protein A–deficient mutant of S aureus strain USA300

(USA300Dspa) was used to avoid unspecific antibody binding. For

2-dimensional immunoblots, the colonizing S aureus isolates of 5 S aureus

carriers were used as a source of bacterial antigens in a personalized approach.

Antibody binding to protein A was avoided by restricting the immunoblot

analysis to a pH range of 6 to 11, which excludes protein A. The S aureus

strains were cultured under iron-restricted (1-dimensional immunoblots) or

iron-sufficient (2-dimensional immunoblots) growth conditions to the

postexponential growth phase. Proteins in the supernatants were precipitated

by 10% trichloroacetic acid at 48C overnight. They were washed and

rehydrated, and the concentration was determined according to the Bradford

method.

One-dimensional immunoblotting was performed with an automated

capillary-based blotting system (Simple Western Assay, ProteinSimple),

as previously described.E2 Extracellular protein extracts of S aureus

USA300Dspa cell culture supernatants were used at 1 mg/mL. Human serum

(1:100) and peroxidase-conjugated secondary antibodies (mouse anti-human

IgG1 or IgG4, 10 mg/mL; Invitrogen, Carlsbad, Calif) were diluted in the

provided blocking diluent (ProteinSimple). The resulting signals were

analyzed with Compass software 2.6.5 (ProteinSimple).

Two-dimensional immunoblotting was performed to visualize binding of

serum IgG1 and IgG4 to proteins of the colonizing S aureus isolates in 5

healthy human S aureus carriers. The procedure was performed, as previously

described,E3,E4 with the following adaptations. Proteins were separated by

using 2-dimensional gel electrophoresis. In the first dimension the S aureus

proteins (30 mg per strip) were separated according to their isoelectric point

(pH range, 6-11) by using 7-cm Immobiline DryStrips (GE Healthcare).

In the second dimension they were resolved by using SDS-PAGE

according to molecular mass. The separated proteins were transferred onto a

polyvinylidene difluoride membrane. After blocking with 5% skim milk

powder in Tris-buffered saline–Tween buffer (20 mmol/L Tris-HCl,

137 mmol/L NaCl, and 0.1% [vol/vol] Tween 20 [pH 7.6]), membranes

were decorated with serum antibodies by means of incubation with human

serum (1:10,000). IgG1 and IgG4 binding was detected by using

peroxidase-conjugated secondary antibodies (mouse anti-human IgG1 or

IgG4, 0.1 mg/mL; Invitrogen) and visualized with luminescent substrate

(Super-Signal West Femto Maximum Sensitivity Substrate; Pierce,

Rockford, Ill).

Protein identification
For mass spectrometric analysis, S aureus proteins (100 mg/strip) were

separated by their isoelectric point (pH range, 6-11) by using 11-cm

Immobiline DryStrips (GE Healthcare). After separation in the second

dimension according to molecular mass, proteins were stained with Flamingo

dye (Bio-Rad Laboratories, Hercules, Calif), according to the manufacturer’s

instructions. Gels were scannedwith a Typhoon 9400 scanner (GEHealthcare)

at a resolution of 100 mm at 532 nm.E4 S aureus proteins corresponding to the

IgG4 signals were identified bymatching 2-dimensional immunoblots with the

Flamingo-stained 2-dimensional gels. Protein spots were excised and

identified by means of mass spectrometry, as previously described.E4

For identification of S aureus proteins in tissue samples, snap-frozen nasal

polyps were transferred to Teflon vessels precooled in liquid nitrogen and

containing a tungsten carbide bead and disrupted in a bead mill

(Mikrodismembrator S; B. Braun Biotech International GmbH, Melsungen,

Germany; part of Sartorius AG, G€ottingen, Germany) at 2600 rpm for

2 minutes. Tissue powder was suspended in PBS and subjected to 9 cycles

of ultrasonication at 50% power (Sonopuls; BANDELIN electronic GmbH

& Co. KG, Berlin, Germany). After pelleting insoluble material by means

of centrifugation, the protein concentration of the supernatant was determined

with a Bradford assay (Bio-Rad Laboratories). After separation by using

SDS-PAGE, gel pieces were destained and subjected to an in-gel tryptic

digestion with a trypsin/protein mass ratio of 1:15. Peptides were extracted

from the gel pieces by 2 using cycles of 30 minutes of ultrasonication, first

with 0.1% (vol/vol) acetic acid in water and then with 50% (vol/vol)

acetonitrile/0.05% (vol/vol) acetic acid in water. Afterward, peptide eluates

were lyophilized and resuspended in Buffer A1 (0.1% [vol/vol] acetic acid

and 2% [vol/vol] acetonitrile in water). Finally, tryptic peptides were purified

with ZipTip C18 (Millipore, Billerica, Mass).

Peptide samples were reverse-phase separated with a nano UPLC (Acquity

UPLC system, Waters, Milford, Mass) system coupled with an Orbitrap Velos

mass spectrometer (Thermo Fisher Scientific, Waltham, Mass), as described

by Jehmlich et al.E5 To exclude tandem mass spectrometry spectra from hu-

man tissuematerial, a first searchwas performedwithMascot in-houseversion

2.3.02 with the UniProt human database containing 40,460 sequences and

22,585,166 residues. Trypsin was selected as enzyme without any missed

cleavage site, and a mass tolerance of 10 ppm for the precursor ion

(including 13C shift) was applied. For fragment ion search, 0.05 Da for the

higher-energy collisional dissociation tandem mass spectrometry spectra

and 0.5 for the collision-induced dissociation tandem mass spectrometry

spectra were applied, and carbamidomethyl conversion was allowed as a fixed

modification. In the second search iteration, the S aureus–specific peptides

were identified, and tandem mass spectrometry spectra, which did not pass

the significance threshold filter (P < .05) in the first iteration, were

researched against the MSMSpdbb1.1 S aureus database, version 2.0.E6 The

database contains 14 S aureus strains and 13 plasmids (4,374 sequences and

1,923,939 residues).

Recombinant proteins
Recombinant Hla with a C-terminal strep-tag was previously cloned from

the genome of S aureus strain COLE7 and overexpressed inE coliBL21 pLysS,

as described previously.E8 The final LPS concentration in experiments with

Hla was 5.33 EU/mL. The bacterial Spl gene sequences were derived from

S aureus USA300 and amplified by means of PCR with the primers listed in

Table E1. Tag-free coding sequences of the SplA, SplB, SplD, and SplE

proteins were cloned under the control of the acetoin-inducible acoA promoter

into the stable, high-copy plasmid pMSE3.E9 For this purpose, the acoA

promoter was amplified from B subtilis by using the oligonucleotides 5413

and 5414 (Table E1). Then the T7-terminator was added, and the SpeI and

NdeI restriction sites were inserted between the promoter and terminator.

Then the amplicon was digested with XbaI and StuI and ligated into pMSE3

cut with XbaI and SmaI. In a next step, the resulting plasmid pJK267 was

cut with NdeI and SpeI and fused with the gene sequences of the individual

Spls through a sequence- and ligation-independent cloning protocol.E10 The

obtained expression vectors were transferred into electrocompetent B subtilis

6051HGW LS8P-D cells, as described elsewhere.E11
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Recombinant Spl proteins were expressed in B subtilis 6051HGWLS8P-D

in SB medium containing kanamycin (10 mg/mL).E12 The cells were cultured

at 378C, and protein expression was induced by the absence of glucose and

presence of 0.5% acetoin provided from the beginning of cultivation.

Twenty-four hours after induction, cells were removed by means of centrifu-

gation. Culture supernatant was filtered (0.22 mm) and subjected to diafiltra-

tion with Minimate tangential flow filtration capsules (10 kDa; Pall

Corporation, Port Washington, NY). Then the buffer was exchanged with

buffer A (20 mmol/L Tris/HCl, pH 7.5). Proteins were purified by using

ion exchange chromatography on an SP Sepharose Fast Flow column (GE

Healthcare). Proteins bound to SP Sepharosewere elutedwith a linear gradient

of NaCl in buffer A. Spl-containing fractions were identified by means of

SDS-PAGE and pooled. Further purification, concentration, and buffer

exchange with PBS was performed in 2 steps by using centrifugal filter units

(Amicon Ultra 30K/10K, Merck Millipore). The quality of the resulting

protein preparations was verified by using SDS-PAGE.

Human T-cell stimulation assay
Blood was drawn from healthy volunteers who had provided informed

consent. It was anticoagulated with EDTA, and PBMCs were isolated from

100 mL of blood by means of Ficoll density gradient centrifugation. The cells

were resuspended in 10 mL of R5H medium (RPMI-1640 supplemented with

200 U/mL penicillin, 200 mg/mL streptomycin, 4 mmol/L L-glutamine,

0.1 mmol/L nonessential amino acids, 1.0 mmol/L sodium pyruvate,

50 nmol/L b-mercaptoethanol, and 5% pooled human serum) and incubated

for 45minutes in a T75 cell culture flask (378C, 5%CO2, and 100% humidity).

The lymphocytic cell–containing supernatant was removed, and the adherent

feeder cells were detached with a cell scraper. Both cell populations were

centrifuged separately (for 10 minutes at 317g) and resuspended in 2 mL of

fresh R5Hmedium. The feeder cells were counted with a B€urker cell chamber

and adjusted to 200,000 cells/mL and irradiated with 30 Gy. T cells were

isolated from lymphatic cells by means of attachment to nylon wool.E13

Two million T cells and 200,000 feeder cells were incubated in 24-well plates

with 5 mg of heat-treated recombinant S aureus antigen in 1.5 mL of R5H

medium (378C, 5% CO2, and 100% humidity). Feeder cells incubated with

S aureus proteins in the absence of T cells served as control cells. After

culturing for 5 days, 750 mL of supernatant was removed and supplemented

with 750 mL of fresh R5H medium, including IL-2 (20 IU/mL). After

incubation for an additional 4 days, 150 mL of supernatant was collected for

cytokine analysis.

Cytokine concentrations were measured with a cytometric bead array (BD

Biosciences), according to the manufacturer’s instructions. Fluorescence was

analyzed with an LSR II Flow Cytometer (BD Bioscience), and cytokine

concentrations were determined with the software FCAPArray 3 (Soft Flow,

P�ecs, Hungary).

The means of 2 biological replicates were calculated, and the cytokine

concentrations from controls without T cells were subtracted. For the

calculation of ratios, cytokine concentrations of less than the threshold of

detection were set to 1 ng/mL.

ELISA
Ninety-six-well plates (MaxiSorp; Nunc, Rochester, NY) were coated with

100 mL of recombinant S aureus antigen solution (5 mg/mL) per well over-

night at 48C. The plates werewashed 3 times (PBS-T 0.05%), and free binding

sites were saturated by incubating the wells with 150 mL of blocking buffer

(10% FCS in PBS) for 1 hour at room temperature at 100 rpm. After blocking,

the wells were incubated with 50 mL of diluted human serum for 1 hour at

room temperature and 100 rpm.

Human serum was serially diluted 1:5 in blocking buffer beginning at 1:50

and added to the wells To measure IgG1 and IgG4 levels. After washing, this

was followed by incubation with 50 mL of peroxidase-conjugated secondary

antibody (mouse anti-human IgG1 or IgG4, 100 ng/mL; Invitrogen) for

1 hour at room temperature and 100 rpm. Wells were washed again and

incubated for 10 minutes with 50 mL of substrate (OptEIA, BD Biosciences).

The reaction was stopped with 20 mL of 2 N H2SO4, and absorption was

measured at 450 nm. Measurements were performed in duplicates, and the

means were used to generate a saturation curve based on the Clack theory

interaction model using a non–least squared algorithm with 500 iterations

as follows:

Intensity5 Intensitymax �
�
Dilution

���
Dilution at Intensitymax=2 þ Dilution

�
:

Best fit during the iterations was determined by using the lowest sigma value

(sigma: square root of the estimated variance of the random error as follows:

s2 5 1=ðn-pÞSum�
R½i�2�;

where R[i] is the i-th weighted residual). The half-maximal OD at 450 nm

was multiplied by the dilution factor to obtain the antigen-specific antibody

titer (AU). For sera with antigen-specific IgG1 and IgG4 amounts that were

too low for calculating a hyperbolic standard curve, the lowest titer of all

sera was assumed. All calculations were performed with R software (R

3.0.1).E14

Formeasuring human serum IgE levels, the process was adapted as follows.

Human serum was diluted 1:5 in blocking buffer. A biotin-conjugated

secondary antibody (mouse anti-human IgE, 10 mg/mL; Invitrogen) was

used in combination with peroxidase-conjugated streptavidin (3 mg/mL;

Dianova, Hamburg, Germany) to detect antibody binding. Single OD

measurements were performed at 450 nm, and the blank value in the absence

of serum was multiplied by 1.5 and subtracted.

Mouse serum IgE levels were measured as follows. Mouse serum

was diluted 1:5 in blocking buffer. A biotin-conjugated secondary

antibody (rat anti-mouse IgE, 10 mg/mL; Thermo Fisher) was used in

combination with peroxidase-conjugated streptavidin (3 mg/mL, Dianova)

to detect antibody binding. Single OD measurements were performed at

450 nm, and the blank value in the absence of serumwasmultiplied by 1.5 and

subtracted.

Human sinonasal ex vivo tissue-cube fragment

stimulation assay
Fresh tissue fragments of human nasal polyps (60.9 mm3) of patients

with chronic rhinosinusitis were suspended as 0.04 g of tissue cubes/mL

TCM. They were placed into 48-well plates in a total volume of 0.5 mL

per well. Individual wells received either nothing (TCM), SplD (both at 4,

10, and 25 mg/mL), or the S aureus superantigen SEB (0.1 mg/mL;

Sigma-Aldrich, Bornem, Belgium) as a stimulation control. After 24 hours

of culture, the supernatants were snap-frozen in liquid nitrogen and stored

at 2208C until cytokine measurement. They were assayed for IL-5, IL-17,

INF-g, and TNF-a levels by means of Luminex xMAP technology with

the Fluorokine MAP Multiplex Human Cytokine Panel A kit (R&D

Systems, Minneapolis, Minn) on a Bio-Plex 200 Array Reader (Bio-Rad

Laboratories).

Murine asthma model
Animal experiments were approved by the Institutional Animal Ethics

Committee of Ghent University. Female wild-type C57BL/6 JO mice were

obtained from Harlan Laboratories at the age of 7 to 8 weeks. Mice were

anesthetized with isoflurane/air. Fifty microliters of PBS per mouse or PBS

containing either OVA (2 mg/mL;Worthington) or purified SplD (0.9 mg/mL)

was instilled into the trachea. These applications were repeated 6 times on

alternate days, according to an established protocol.E15 On day 14, mice were

killed by means of a lethal intraperitoneal injection of Nembutal (Ceva Sante

Animale). Mice were kept in individually ventilated cages in a 12-hour light/

12-hour dark cycle. Food and water were accessible at all times. The animals

were randomly allocated to different experimental groups. No pre-established

inclusion/exclusion criteria were used in the study. The investigators

performing data analysis were blinded to group allocations and experimental

treatment. The required experimental sample size and archived power were
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calculated based on the preliminary experiments by using G*Power 3.1.5

software (a 5 .5, power 5 0.848).E16

Antibodies and reagents
Analysis of human serum. Peroxidase-conjugated mouse

anti-human IgG4 secondary antibody (clone HP6025, #A-10654), peroxidase-

conjugated mouse anti-human IgG1 secondary antibody (clone HP6069,

#A-10648), and biotinylated mouse anti-human IgE secondary antibody

(clone HP6029, #05-4740) were all purchased from Invitrogen. Peroxidase-

conjugated streptavidin (#016-030-084) was obtained from Dianova.

Analysis of mouse serum. Anti-mouse IgE biotinylated (clone

LO-ME-3, #MA5-16779) antibody was obtained from Thermo Fisher.

Streptavidin peroxidase-conjugated (#016-030-084) was obtained from

Dianova.

FLEXMAP 3D assay. Anti-human IgG PE (polyclonal, #109-

116-098) and anti-mouse IgG PE (polyclonal, #115-116-146) antibodies

were both obtained from Dianova. Anti-His tag purified (#34660) was

obtained from Qiagen (Venlo, The Netherlands).

Mouse model. Anti-mouse CD3e purified (clone 145-2C11,

#14-0031-82), anti-mouse CD28 purified (clone 37.51, #14-0281-81),

anti-mouse CD16/32 (clone 93, #16-0161-81), anti-mouse Ly-6G (Gr-1)

FITC (clone RB6-8C5, #11-5931-82), anti-mouse CD11b PerCP-Cy 5.5

(clone M1/70 #45-0112-80), anti-mouse F4/80 APC (clone BM8, #17-4801-

80), anti-mouse CD4 FITC (clone RM4-4, #11-0043-81), anti-mouse CD25

APC (clone PC61.5, #17-0251-81), anti-mouse CD3e PE (clone 145-2C11,

#12-0031-81), and anti-mouse CD8 PerCP-Cy 5.5 (clone 53-6.7, #45-0081-

80) antibodies were obtained from eBioscience. Anti-mouse Siglec-F PE

(clone 145-2C11, #130-098-454) antibody was purchased from Miltenyi

Biotec (Leiden, The Netherlands), and anti-mouse CD11c PE-Cy7 (clone

HL3, #561022) antibody was purchased from BD Biosciences.

The LIVE/DEAD Fixable Aqua dead cell stain kit (#L34957) from

Molecular probes (Leiden, The Netherlands) and 7-AAD Viability Staining

Solution (#00-6993-50) from eBioscience were used for the exclusion of dead

cells from the analysis.
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FIG E1. Serum IgG1 and IgG4 binding to the S aureus extracellular proteome. Sera and nasal swabs were

obtained from 5 healthy S aureus carriers, and the colonizing S aureus strains were isolated. The 5 S aureus
isolates were grown to postexponential growth phase, and the extracellular proteinswere resolved by using

2-dimensional gel electrophoresis (top row). Immunoblots were performed in parallel and decorated with

serum from the corresponding carrier in a personalized approach. Binding of IgG1 (second row) and IgG4

(third row) was visualized with corresponding secondary antibodies. IgG4 binding to the extracellular

proteome of the colonizing S aureus strain was highly variable. Mass spectrometry revealed that prominent

IgG4-binding spots on the immunoblots were colocalized with Spl proteins.
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FIG E2. IgG1 and IgG4 binding to recombinant Spls. Binding of serum IgG4 (A) and IgG1 (B) to SplA, SplB,

SplD, and SplE, as well as Hla (grey shaded bars), was determined in 40 healthy volunteers by using ELISA.

IgG4 binding to Spls was stronger and IgG1 binding was weaker than to Hla. Medians and interquartile

ranges are indicated. ***P < .001 versus Hla, Kruskal-Wallis test with the Dunn multiple comparisons

posttest.
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FIG E3. Cytokine release by T cells stimulated with recombinant Spls or Hla. The cytokine response was

elicited in peripheral blood T cells of 9 healthy volunteers by means of incubation with recombinant SplA,

SplB, SplD, and SplE, as well as Hla. The response to Hla was dominated by TH1/TH17 cytokines, as is typical

of S aureus antigens. In contrast, only very low amounts of these cytokines were released in response to

Spls (A). Vice versa, in some subjects Spls induced the release of larger amounts of TH2 cytokines than

Hla (B). This corresponds to a pronounced TH2 bias in the T-cell reaction to Spls. Medians are indicated.

*P < .05, **P < .01, and ***P < .001 versus Hla, Kruskal-Wallis test with the Dunn multiple comparisons

posttest.
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FIG E4. Identification of SplF by using nanoscale liquid chromatography tandem mass spectrometry (nLC-

MS/MS) and IgG binding to recombinant Spls in nasal polyp samples. Nasal polyp samples from ethmoidal

sinuses were collected from 6 patients during endoscopic sinus surgery (BOF782-BOF1209). S aureus–spe-
cific proteins were detected by using nLC-MS/MS analysis (A). The presence of Spls in the nasal polyp sus-

pension was then confirmed indirectly by means of measurement of IgG binding to the respective

recombinant proteins by using FLEXMAP 3D. The median fluorescence intensities of 7 dilutions are shown

for each serine protease and 3 cytoplasmic bacterial control proteins (B).

J ALLERGY CLIN IMMUNOL

nnn 2016

9.e7 STENTZEL ET AL



TABLE E1. List of oligonucleotide primers

Gene Primer sequence

splA 59 SLIC GTG AAC CCT AAA TAG AAG GAG GAA ACA CAT ATG AAT AAA AAT GTA ATG GTT AAA G

splA 39 SLIC GTT TAG AGG CCC CAA GGG GTT ATG CTA ACT AGT TTA TTT TTC AAT ATT ATT TTG

splB 59 SLIC GTG AAC CCT AAA TAG AAG GAG GAA ACA CAT ATG AAC AAA AAC GTA GTC ATC AAG A

splB 39 SLIC GTT TAG AGG CCC CAA GGG GTT ATG CTA ACT AGT TTA TTT ATC TAT GTT TTC TG

splD 59 SLIC GTG AAC CCT AAA TAG AAG GAG GAA ACA CAT ATG AAT AAA AAT ATA ATC ATC AAA AGT ATT GCG

splD 39 SLIC GTT TAG AGG CCC CAA GGG GTT ATG CTA ACT AGT TTA TTT ATC TAA ATT ATC TGC AAT A

splE 59 SLIC GTG AAC CCT AAA TAG AAG GAG GAA ACA CAT ATG AAT AAA AAT ATA ATC ATC AAA AGT ATT GCA

splE 39 SLIC GTT TAG AGG CCC CAA GGG GTT ATG CTA ACT AGT TTA TTT ATC TGT GTT ATC TG

acoA-promoter

of B subtilis #5413

ATA TCT CTA GAA AAA ACC CCT CAA GAC CCG TTT AGA GGC CCC AAG GGG TTA TGC TAA CTA GTA TCG

ATA TCG AAT TCT CGA GCA TAT GTG TTT CCT CCT TCT ATT TAG GG

acoA-promoter

of B subtilis #5414

AAC GGT AGG CCT CGA TTC AGT CAA ACG ATG CAG AG

SLIC, Sequence- and ligation-independent cloning.
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