50 research outputs found

    A new monoclonal antibody detects downregulation of protein tyrosine phosphatase receptor type γ in chronic myeloid leukemia patients

    Get PDF
    Background: Protein tyrosine phosphatase receptor gamma (PTPRG) is a ubiquitously expressed member of the protein tyrosine phosphatase family known to act as a tumor suppressor gene in many different neoplasms with mechanisms of inactivation including mutations and methylation of CpG islands in the promoter region. Although a critical role in human hematopoiesis and an oncosuppressor role in chronic myeloid leukemia (CML) have been reported, only one polyclonal antibody (named chPTPRG) has been described as capable of recognizing the native antigen of this phosphatase by flow cytometry. Protein biomarkers of CML have not yet found applications in the clinic, and in this study, we have analyzed a group of newly diagnosed CML patients before and after treatment. The aim of this work was to characterize and exploit a newly developed murine monoclonal antibody specific for the PTPRG extracellular domain (named TPγ B9-2) to better define PTPRG protein downregulation in CML patients. Methods: TPγ B9-2 specifically recognizes PTPRG (both human and murine) by flow cytometry, western blotting, immunoprecipitation, and immunohistochemistry. Results: Co-localization experiments performed with both anti-PTPRG antibodies identified the presence of isoforms and confirmed protein downregulation at diagnosis in the Philadelphia-positive myeloid lineage (including CD34+/CD38bright/dim cells). After effective tyrosine kinase inhibitor (TKI) treatment, its expression recovered in tandem with the return of Philadelphia-negative hematopoiesis. Of note, PTPRG mRNA levels remain unchanged in tyrosine kinase inhibitors (TKI) non-responder patients, confirming that downregulation selectively occurs in primary CML cells. Conclusions: The availability of this unique antibody permits its evaluation for clinical application including the support for diagnosis and follow-up of these disorders. Evaluation of PTPRG as a potential therapeutic target is also facilitated by the availability of a specific reagent capable to specifically detect its target in various experimental conditions

    The hepatitis B x antigen anti-apoptotic effector URG7 is localized to the endoplasmic reticulum membrane

    Get PDF
    Hepatitis B x antigen up-regulates the liver expression of URG7 that contributes to sustain chronic virus infection and to increase the risk for hepatocellular carcinoma by its anti-apoptotic activity. We have investigated the subcellular localization of URG7 expressed in HepG2 cells and determined its membrane topology by glycosylation mapping in vitro. The results demonstrate that URG7 is N-glycosylated and located to the endoplasmic reticulum membrane with an Nlumen–Ccytosol orientation. The results imply that the anti-apoptotic effect of URG7 could arise from the C-terminal cytosolic tail binding a pro-apoptotic signaling factor and retaining it to the endoplasmic reticulum membrane

    Interaction between dietary and lifestyle risk factors and N-Acetyltransferase polymorphisms in B-Cell lymphoma etiology

    Get PDF
    Background: Gene-environment interactions are suggested to play a role in lymphomagenesis. Methods: We tested the interaction between the NAT1/NAT2 phenotype, as inferred by the respective genotypes, and exposure to dietary and lifestyle risk factors, in 199 incident lymphoma cases and 188 population controls. We used unconditional logistic regression to calculate the odds ratio (OR) and its 95% confidence interval for lymphoma (all subtypes combined) and B cell lymphoma, associated to the rapid NAT1 phenotype and to the intermediate and slow NAT2 phenotype, and to the estimated dietary intake of heterocyclic amines and folate, current smoking, coffee, and use of permanent hair dyes, as well as the respective interaction terms. We adjusted the ORs by age, gender, and education, and we used the likelihood ratio test to test the interaction between the NAT1, NAT2 phenotype and the dietary and lifestyle variables. Results: We observed an increase in risk of lymphoma (all subtypes combined) and B-cell lymphoma in particular associated with the estimated above median dietary intake of heterocyclic amines (OR = 4.2, 95%CI 1.2 – 14.8) and folate (OR = 4.1, 95%CI 0.7 – 22.4) among subjects with the NAT1 rapid acetylator phenotype, but not independent on the NAT1 phenotype. The test for interaction was significant for heterocyclic amines, but not for folate (p for interaction = 0.026 and 0.076 respectively). Ever use of permanent hair dyes was associated with an elevated risk independent on the NAT1, NAT2 phenotypes; risk decreased to null among intermediate and slow NAT1 acetylators (p for interaction = 0.010). Conclusions: Our results suggest that NAT1, NAT2 polymorphisms interact with dietary and lifestyle exposures in modulating risk of lymphoma and particularly B-cell lymphoma

    Early Diffusion of SARS-CoV-2 Infection in the Inner Area of the Italian Sardinia Island

    Get PDF
    Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been responsible for the coronavirus disease 2019 (COVID-19) pandemic, which started as a severe pneumonia outbreak in Wuhan, China, in December 2019. Italy has been the first European country affected by the pandemic, registering a total of 300,363 cases and 35,741 deaths until September 24, 2020. The geographical distribution of SARS-CoV-2 in Italy during early 2020 has not been homogeneous, including regions severely affected as well as administrative areas being only slightly interested by the infection. Among the latter, Sardinia represents one of the lowest incidence areas likely due to its insular nature. Methods: Next-generation sequencing of a small number of complete viral genomes from clinical samples and their virologic and phylogenetic characterization was performed. Results: We provide a first overview of the SARS-CoV-2 genomic diversity in Sardinia in the early phase of the March–May 2020 pandemic based on viral genomes isolated in the most inner regional hospital of the island. Our analysis revealed a remarkable genetic diversity in local SARS-CoV-2 viral genomes, showing the presence of at least four different clusters that can be distinguished by specific amino acid substitutions. Based on epidemiological information, these sequences can be linked to at least eight different clusters of infection, four of which likely originates from imported cases. In addition, the presence of amino acid substitutions that were not previously reported in Italian patients has been observed, asking for further investigations in a wider population to assess their prevalence and dynamics of emergence during the pandemic. Conclusion: The present study provides a snapshot of the initial phases of the SARS-CoV-2 infection in inner area of the Sardinia Island, showing an unexpected genomic diversity

    Heterogeneity of Early Host Response to Infection with Four Low-Pathogenic H7 Viruses with a Different Evolutionary History in the Field

    Get PDF
    Once low-pathogenic avian influenza viruses (LPAIVs) of the H5 and H7 subtypes from wild birds enter into poultry species, there is the possibility of them mutating into highly pathogenic avian influenza viruses (HPAIVs), resulting in severe epizootics with up to 100% mortality. This mutation from a LPAIV to HPAIV strain is the main cause of an AIV's major economic impact on poultry production. Although AIVs are inextricably linked to their hosts in their evolutionary history, the contribution of host-related factors in the emergence of HPAI viruses has only been marginally explored so far. In this study, transcriptomic sequencing of tracheal tissue from chickens infected with four distinct LP H7 viruses, characterized by a different history of pathogenicity evolution in the field, was implemented. Despite the inoculation of a normalized infectious dose of viruses belonging to the same subtype (H7) and pathotype (LPAI), the use of animals of the same age, sex and species as well as the identification of a comparable viral load in the target samples, the analyses revealed a heterogeneity in the gene expression profile in response to infection with each of the H7 viruses administered

    A role of BRCA1 and BRCA2 germline mutations in breast cancer susceptibility within Sardinian population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In recent years, numerous studies have assessed the prevalence of germline mutations in <it>BRCA1 </it>and <it>BRCA2 </it>genes in various cohorts. We here extensively investigated the prevalence and geographical distribution of <it>BRCA1-2 </it>mutations in the entire genetically-homogeneous Sardinian population. The occurrence of phenotypic characteristics which may be predictive for the presence of <it>BRCA1-2 </it>germline mutations was also evaluated.</p> <p>Methods</p> <p>Three hundred and forty-eight breast cancer patients presenting a familial recurrence of invasive breast or ovarian carcinoma with at least two affected family members were screened for <it>BRCA1-2 </it>mutations by DHPLC analysis and DNA sequencing. Association of <it>BRCA1 </it>and <it>BRCA2 </it>mutational status with clinical and pathological parameters was evaluated by Pearson's Chi-Squared test.</p> <p>Results and Conclusion</p> <p>Overall, 8 <it>BRCA1 </it>and 5 <it>BRCA2 </it>deleterious mutations were detected in 35/348 (10%) families; majority (23/35;66%) of mutations was found in <it>BRCA2 </it>gene. The geographical distribution of <it>BRCA1-2 </it>mutations was related to three specific large areas of Sardinia, reflecting its ancient history: <it>a</it>) the Northern area, linguistically different from the rest of the island (where a <it>BRCA2 c.8764_8765delAG </it>mutation with founder effect was predominant); <it>b</it>) the Middle area, land of the ancient Sardinian population (where <it>BRCA2 </it>mutations are still more common than <it>BRCA1 </it>mutations); and <it>c</it>) the South-Western area, with many Phoenician and Carthaginian locations (where <it>BRCA1 </it>mutations are prevalent). We also found that phenotypic features such as high tumor grading and lack of expression of estrogen/progesterone receptors together with age at diagnosis and presence of ovarian cancer in the family may be predictive for the presence of <it>BRCA1-2 </it>germline mutations.</p

    Predictive value of tyrosine phosphatase receptor gamma for the response to treatment tyrosine kinase inhibitors in chronic myeloid leukemia patients.

    Get PDF
    Protein tyrosine phosphatase receptor gamma (PTPRG) is a member of the receptor-like family protein tyrosine phosphatases and acts as a tumor suppressor gene in different neoplasms. Recent studies reported the down-regulation of PTPRG expression levels in Chronic Myeloid Leukemia disease (CML). In addition, the BCR-ABL1 transcript level is currently a key predictive biomarker of CML response to treatment with Tyrosine Kinase Inhibitors (TKIs). The aim of this study was to employ flow cytometry to monitor the changes in the expression level of PTPRG in the white blood cells (WBCs) of CML patients at the time of diagnosis and following treatment with TKIs. WBCs from peripheral blood of 21 CML patients were extracted at diagnosis and during follow up along with seven healthy individuals. The PTPRG expression level was determined at protein and mRNA levels by both flow cytometry with monoclonal antibody (TPγ B9-2) and RT-qPCR, and BCR-ABL1 transcript by RT-qPCR, respectively. PTPRG expression was found to be lower in the neutrophils and monocytes of CML patients at time of diagnosis compared to healthy individuals. Treatment with TKIs nilotinib and Imatinib Mesylate restored the expression of PTPRG in the WBCs of CML patients to levels observed in healthy controls. Moreover, restoration levels were greatest in optimal responders and occurred earlier with nilotinib compared to imatinib. Our results support the measurement of PTPRG expression level in the WBCs of CML patients by flow cytometry as a monitoring tool for the response to treatment with TKIs in CML patients

    A Role of <i>BRCA1</i> and <i>BRCA2</i> germline mutations in breast cancer susceptibility within Sardinian population

    Get PDF
    Background. In recent years, numerous studies have assessed the prevalence of germline mutations in BRCA1 and BRCA2 genes in various cohorts. We here extensively investigated the prevalence and geographical distribution of BRCA1-2 mutations in the entire genetically-homogeneous Sardinian population. The occurrence of phenotypic characteristics which may be predictive for the presence of BRCA1-2 germline mutations was also evaluated. Methods. Three hundred and forty-eight breast cancer patients presenting a familial recurrence of invasive breast or ovarian carcinoma with at least two affected family members were screened for BRCA1-2 mutations by DHPLC analysis and DNA sequencing. Association of BRCA1 and BRCA2 mutational status with clinical and pathological parameters was evaluated by Pearson's Chi-Squared test. Results and Conclusion. Overall, 8 BRCA1 and 5 BRCA2 deleterious mutations were detected in 35/348 (10%) families; majority (23/35;66%) of mutations was found in BRCA2 gene. The geographical distribution of BRCA1-2 mutations was related to three specific large areas of Sardinia, reflecting its ancient history: a) the Northern area, linguistically different from the rest of the island (where a BRCA2 c.8764_8765delAG mutation with founder effect was predominant); b) the Middle area, land of the ancient Sardinian population (where BRCA2 mutations are still more common than BRCA1 mutations); and c) the South-Western area, with many Phoenician and Carthaginian locations (where BRCA1 mutations are prevalent). We also found that phenotypic features such as high tumor grading and lack of expression of estrogen/progesterone receptors together with age at diagnosis and presence of ovarian cancer in the family may be predictive for the presence of BRCA1-2 germline mutations

    Yaws re-emergence and bacterial drug resistance selection after mass administration of azithromycin: a genomic epidemiology investigation.

    Get PDF
    BACKGROUND: In a longitudinal study assessing the WHO strategy for yaws eradication using mass azithromycin treatment, we observed resurgence of yaws cases with dominance of a single JG8 sequence type and emergence of azithromycin-resistant Treponema pallidum subspecies pertenue (T p pertenue). Here, we analyse genomic changes in the bacterial population using samples collected during the study. METHODS: We did whole bacterial genome sequencing directly on DNA extracted from 37 skin lesion swabs collected from patients on Lihir Island, Papua New Guinea, between April 1, 2013, and Nov 1, 2016. We produced phylogenies and correlated these with spatiotemporal information to investigate the source of new cases and the emergence of five macrolide-resistant cases. We used deep amplicon sequencing of surveillance samples to assess the presence of minority macrolide-resistant populations. FINDINGS: We recovered 20 whole T p pertenue genomes, and phylogenetic analysis showed that the re-emerging JG8 sequence type was composed of three bacterial sublineages characterised by distinct spatiotemporal patterns. Of five patients with resistant T p pertenue, all epidemiologically linked, we recovered genomes from three and found no variants. Deep sequencing showed that before treatment, the index patient had fixed macrolide-sensitive T p pertenue, whereas the post-treatment sample had a fixed resistant genotype, as did three of four contact cases. INTERPRETATION: In this study, re-emergence of yaws cases was polyphyletic, indicating multiple epidemiological sources. However, given the genomic and epidemiological linkage of resistant cases and the rarity of resistance alleles in the general population, azithromycin resistance is likely to have evolved only once in this study, followed by onward dissemination. FUNDING: Wellcome and Provincial Deputation of Barcelona

    Feline herpesvirus pneumonia: investigations into the pathogenesis

    Full text link
    Feline herpesvirus type 1 (FeHV-1) is one of the etiological agents of feline respiratory disease. FeHV-1 is an epitheliotropic and cytopathic virus that mainly causes rhinitis and conjunctivitis, although pneumonia is also occasionally seen. In this study, the authors investigated the pathogenesis of FeHV-1-associated pneumonia, comparing natural cases with viral infection of tracheal ring and cell cultures in vitro, using histology, immunohistology, double immunofluorescence, and transmission electron microscopy as investigative tools. The results confirm that FeHV-1 targets both respiratory epithelial cells and pneumocytes and indicate that FeHV-1 pneumonia is the consequence of continuous cell-to-cell viral spread from the upper airways via the trachea into the lungs. They provide strong evidence that FeHV-1–infected cells die primarily via apoptosis, following loss of cell-to-cell contact, rounding, and detachment. However, virus-induced lesions in vivo are dominated by marked neutrophil infiltration and extensive necrosis with less prominent apoptosis; in the airways, the tissue necrosis can extend into the submucosa. The necrosis appears to result from virus-induced neutrophil influx and release of proteolytic enzymes, such as matrix metalloproteinase-9, from the neutrophils
    corecore