21 research outputs found

    A combinatorial regulatory signature controls terminal differentiation of the dopaminergic nervous system in C. elegans

    Get PDF
    15 pĂĄginas, 7 figuras, 3 tablas.Terminal differentiation programs in the nervous system are encoded by cis-regulatory elements that control the expression of terminal features of individual neuron types. We decoded the regulatory information that controls the expression of five enzymes and transporters that define the terminal identity of all eight dopaminergic neurons in the nervous system of the Caenorhabditis elegans hermaphrodite. We show that the tightly coordinated, robust expression of these dopaminergic enzymes and transporters ("dopamine pathway") is ensured through a combinatorial cis-regulatory signature that is shared by all dopamine pathway genes. This signature is composed of an Ets domain-binding site, recognized by the previously described AST-1 Ets domain factor, and two distinct types of homeodomain-binding sites that act in a partially redundant manner. Through genetic screens, we identified the sole C. elegans Distalless/Dlx ortholog, ceh-43, as a factor that acts through one of the homeodomain sites to control both induction and maintenance of terminal dopaminergic fate. The second type of homeodomain site is a Pbx-type site, which is recognized in a partially redundant and neuron subtype-specific manner by two Pbx factors, ceh-20 and ceh-40, revealing novel roles of Pbx factors in the context of terminal neuron differentiation. Taken together, we revealed a specific regulatory signature and cognate, terminal selector-type transcription factors that define the entire dopaminergic nervous system of an animal. Dopaminergic neurons in the mouse olfactory bulb express a similar combinatorial transcription factor collective of Ets/Dlx/Pbx factors, suggesting deep phylogenetic conservation of dopaminergic regulatory programs.This work was funded by EMBO post-doctoral fellowships and Marie Curie Funds (to M.D. and N.F.), the New York Stem Cell Foundation Fellowships and the Spanish Government (SAF2011-26273) (to N.F), the NIH (R01NS039996-05; R01NS050266-03 to O.H.; R01GM30997 to M.C.; R01GM054510 to R.S.M.; and F32GM099160 to N.A.), and the Stavanger University Hospital (to M.D.). N.F is a NARSAD Young Investigator. O.H. is an Investigator of the Howard Hughes Medical Institute.Peer reviewe

    A Caenorhabditis elegans Zinc Finger Transcription Factor, ztf-6, Required for the Specification of a Dopamine Neuron-Producing Lineage

    Get PDF
    Invertebrate and vertebrate nervous systems generate different types of dopaminergic neurons in distinct parts of the brain. We have taken a genetic approach to understand how the four functionally related, but lineally unrelated, classes of dopaminergic neurons of the nematode Caenorhabditis elegans, located in distinct parts of its nervous system, are specified. We have identified several genes involved in the generation of a specific dopaminergic neuron type that is generated from the so-called postdeirid lineage, called PDE. Apart from classic proneural genes and components of the mediator complex, we identified a novel, previously uncharacterized zinc finger transcription factor, ztf-6. Loss of ztf-6 has distinct effects in different dopamine neuron-producing neuronal lineages. In the postdeirid lineage, ztf-6 is required for proper cell division patterns and the proper distribution of a critical cell fate determinant, the POP-1/TCF-like transcription factor

    The homeodomain transcriptional regulator DVE-1 directs a program for synapse elimination during circuit remodeling

    Get PDF
    The elimination of synapses during circuit remodeling is critical for brain maturation; however, the molecular mechanisms directing synapse elimination and its timing remain elusive. We show that the transcriptional regulator DVE-1, which shares homology with special AT-rich sequence-binding (SATB) family members previously implicated in human neurodevelopmental disorders, directs the elimination of juvenile synaptic inputs onto remodeling C. elegans GABAergic neurons. Juvenile acetylcholine receptor clusters and apposing presynaptic sites are eliminated during the maturation of wild-type GABAergic neurons but persist into adulthood in dve-1 mutants, producing heightened motor connectivity. DVE-1 localization to GABAergic nuclei is required for synapse elimination, consistent with DVE-1 regulation of transcription. Pathway analysis of putative DVE-1 target genes, proteasome inhibitor, and genetic experiments implicate the ubiquitin-proteasome system in synapse elimination. Together, our findings define a previously unappreciated role for a SATB family member in directing synapse elimination during circuit remodeling, likely through transcriptional regulation of protein degradation processes.<br/

    Cxcl12 evolution – subfunctionalization of a ligand through altered interaction with the chemokine receptor

    Get PDF
    The active migration of primordial germ cells (PGCs) from their site of specification towards their target is a valuable model for investigating directed cell migration within the complex environment of the developing embryo. In several vertebrates, PGC migration is guided by Cxcl12, a member of the chemokine superfamily. Interestingly, two distinct Cxcl12 paralogs are expressed in zebrafish embryos and contribute to the chemotattractive landscape. Although this offers versatility in the use of chemokine signals, it also requires a mechanism through which migrating cells prioritize the relevant cues that they encounter. Here, we show that PGCs respond preferentially to one of the paralogs and define the molecular basis for this biased behavior. We find that a single amino acid exchange switches the relative affinity of the Cxcl12 ligands for one of the duplicated Cxcr4 receptors, thereby determining the functional specialization of each chemokine that elicits a distinct function in a distinct process. This scenario represents an example of protein subfunctionalization – the specialization of two gene copies to perform complementary functions following gene duplication – which in this case is based on receptor-ligand interaction. Such specialization increases the complexity and flexibility of chemokine signaling in controlling concurrent developmental processes

    Stochastic loss and gain of symmetric divisions in the C. elegans epidermis perturbs robustness of stem cell number

    Get PDF
    Biological systems are subject to inherent stochasticity. Nevertheless, development is remarkably robust, ensuring the consistency of key phenotypic traits such as correct cell numbers in a certain tissue. It is currently unclear which genes modulate phenotypic variability, what their relationship is to core components of developmental gene networks, and what is the developmental basis of variable phenotypes. Here, we start addressing these questions using the robust number of Caenorhabditis elegans epidermal stem cells, known as seam cells, as a readout. We employ genetics, cell lineage tracing, and single molecule imaging to show that mutations in lin-22, a Hes-related basic helix-loop-helix (bHLH) transcription factor, increase seam cell number variability. We show that the increase in phenotypic variability is due to stochastic conversion of normally symmetric cell divisions to asymmetric and vice versa during development, which affect the terminal seam cell number in opposing directions. We demonstrate that LIN-22 acts within the epidermal gene network to antagonise the Wnt signalling pathway. However, lin-22 mutants exhibit cell-to-cell variability in Wnt pathway activation, which correlates with and may drive phenotypic variability. Our study demonstrates the feasibility to study phenotypic trait variance in tractable model organisms using unbiased mutagenesis screens

    HIF-1 Has a Central Role in Caenorhabditis elegans Organismal Response to Selenium

    Get PDF
    Selenium is a trace element for most organisms; its deficiency and excess are detrimental. Selenium beneficial effects are mainly due to the role of the 21(st) genetically encoded amino acid selenocysteine (Sec). Selenium also exerts Sec-independent beneficial effects. Its harmful effects are thought to be mainly due to non-specific incorporation in protein synthesis. Yet the selenium response in animals is poorly understood. In Caenorhabditis elegans, Sec is genetically incorporated into a single selenoprotein. Similar to mammals, a 20-fold excess of the optimal selenium requirement is harmful. Sodium selenite (Na2SeO3) excess causes development retardation, impaired growth, and neurodegeneration of motor neurons. To study the organismal response to selenium we performed a genetic screen for C. elegans mutants that are resistant to selenite. We isolated non-sense and missense egl-9/EGLN mutants that confer robust resistance to selenium. In contrast, hif-1/HIF null mutant was highly sensitive to selenium, establishing a role for this transcription factor in the selenium response. We showed that EGL-9 regulates HIF-1 activity through VHL-1, and identified CYSL-1 as a key sensor that transduces the selenium signal. Finally, we showed that the key enzymes involved in sulfide and sulfite stress (sulfide quinone oxidoreductase and sulfite oxidase) are not required for selenium resistance. In contrast, knockout strains in the persulfide dioxygenase ETHE-1 and the sulfurtransferase MPST-7 affect the organismal response to selenium. In sum, our results identified a transcriptional pathway as well as enzymes possibly involved in the organismal selenium response

    E-MTAB-8164 - RNAseq of young adult C. elegans animals fed on three different bacterial diets, E. coli OP50, B. subtilis PXN21 and a mixture of both

    No full text
    To uncover the host response pathways that are modified by a B. subtilis diet and that may provide the protective effect against α-synuclein aggregation, we performed comparative global transcriptomics analysis using next generation RNA sequencing (RNA-seq). We compared young adult animals fed on three different diets, E. coli OP50 and B. subtilis PXN21 lawns, consisting of both spores and vegetative cells, and a mixture of both bacteria.Recent discoveries have implicated the gut microbiome in the progression and severity of Parkinson’s disease; however, how gut bacteria affect such neurodegenerative disorders remains unclear. Here, we report that the Bacillus subtilis probiotic strain PXN21 inhibits α-synuclein aggregation and clears preformed aggregates in an established Caenorhabditis elegans model of synucleinopathy. This protection is seen in young and aging animals and is partly mediated by DAF-16. Multiple B. subtilis strains trigger the protective effect via both spores and vegetative cells, partly due to a biofilm formation in the gut of the worms and the release of bacterial metabolites. We identify several host metabolic pathways differentially regulated in response to probiotic exposure, including sphingolipid metabolism. We further demonstrate functional roles of the sphingolipid metabolism genes lagr-1, asm-3, and sptl-3 in the anti-aggregation effect. Our findings provide a basis for exploring the disease-modifying potential of B. subtilis as a dietary supplement.https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-816

    Cxcl12 evolution--subfunctionalization of a ligand through altered interaction with the chemokine receptor.

    No full text
    International audienceThe active migration of primordial germ cells (PGCs) from their site of specification towards their target is a valuable model for investigating directed cell migration within the complex environment of the developing embryo. In several vertebrates, PGC migration is guided by Cxcl12, a member of the chemokine superfamily. Interestingly, two distinct Cxcl12 paralogs are expressed in zebrafish embryos and contribute to the chemotattractive landscape. Although this offers versatility in the use of chemokine signals, it also requires a mechanism through which migrating cells prioritize the relevant cues that they encounter. Here, we show that PGCs respond preferentially to one of the paralogs and define the molecular basis for this biased behavior. We find that a single amino acid exchange switches the relative affinity of the Cxcl12 ligands for one of the duplicated Cxcr4 receptors, thereby determining the functional specialization of each chemokine that elicits a distinct function in a distinct process. This scenario represents an example of protein subfunctionalization--the specialization of two gene copies to perform complementary functions following gene duplication--which in this case is based on receptor-ligand interaction. Such specialization increases the complexity and flexibility of chemokine signaling in controlling concurrent developmental processes
    corecore