17 research outputs found
A novel oral micellar fenretinide formulation with enhanced bioavailability and antitumour activity against multiple tumours from cancer stem cells
Background: An increasing number of anticancer agents has been proposed in recent years with the attempt to overcome treatment-resistant cancer cells and particularly cancer stem cells (CSC), the major culprits for tumour resistance and recurrence. However, a huge obstacle to treatment success is the ineffective delivery of drugs within the tumour environment due to limited solubility, short circulation time or inconsistent stability of compounds that, together with concomitant dose-limiting systemic toxicity, contribute to hamper the achievement of therapeutic drug concentrations. The synthetic retinoid Fenretinide (4-hydroxy (phenyl)retinamide; 4-HPR) formerly emerged as a promising anticancer agent based on pre-clinical and clinical studies. However, a major limitation of fenretinide is traditionally represented by its poor aqueous solubility/bioavailability due to its hydrophobic nature, that undermined the clinical success of previous clinical trials. Methods: Here, we developed a novel nano-micellar fenretinide formulation called bionanofenretinide (Bio-nFeR), based on drug encapsulation in an ion-pair stabilized lipid matrix, with the aim to raise fenretinide bioavailability and antitumour efficacy. Results: Bio-nFeR displayed marked antitumour activity against lung, colon and melanoma CSC both in vitro and in tumour xenografts, in absence of mice toxicity. Bio-nFeR is suitable for oral administration, reaching therapeutic concentrations within tumours and an unprecedented therapeutic activity in vivo as single agent. Conclusion: Altogether, our results indicate Bio-nFeR as a novel anticancer agent with low toxicity and high activity against tumourigenic cells, potentially useful for the treatment of solid tumours of multiple origin
Asparagine levels in the cerebrospinal fluid of children with acute lymphoblastic leukemia treated with pegylated-asparaginase in the induction phase of the AIEOP-BFM ALL 2009 study
Asparagine levels in cerebrospinal fluid and serum asparaginase activity were monitored in children with acute lymphoblastic leukemia treated with pegylated-asparaginase. The drug was given intravenously at a dose of 2,500 IU/m2 on days 12 and 26. Serum and cerebrospinal fluid samples obtained on days 33 and 45 were analyzed centrally. Since physiological levels of asparagine in the cerebrospinal fluid of children and adolescents are 4-10 μmol/L, in this study asparagine depletion was considered complete when the concentration of asparagine was ≤0.2 μmol/L, i.e. below the lower limit of quantification of the assay used. Over 24 months 736 patients (AIEOP n=245, BFM n=491) and 903 cerebrospinal fluid samples (n=686 on day 33 and n=217 on day 45) were available for analysis. Data were analyzed separately for the AIEOP and BFM cohorts and yielded superimposable results. Independently of serum asparaginase activity levels, cerebrospinal fluid asparagine levels were significantly reduced during the investigated study phase but only 28% of analyzed samples showed complete asparagine depletion while relevant levels, ≥1 μmol/L, were still detectable in around 23% of them. Complete cerebrospinal fluid asparagine depletion was found in around 5-6% and 33-37% of samples at serum asparaginase activity level
Near zerO fluoroscopic exPosure during catheter ablAtion of supRavenTricular arrhYthmias: The NO-PARTY multicentre randomized trial
Aims Aim of this study was to compare a minimally fluoroscopic radiofrequency catheter ablation with conventional fluoroscopy-guided ablation for supraventricular tachycardias (SVTs) in terms of ionizing radiation exposure for patient and operator and to estimate patients' lifetime attributable risks associated with such exposure. Methods and results We performed a prospective, multicentre, randomized controlled trial in six electrophysiology (EP) laboratories in Italy. A total of 262 patients undergoing EP studies for SVT were randomized to perform a minimally fluoroscopic approach (MFA) procedure with the EnSiteTMNavXTMnavigation system or a conventional approach (ConvA) procedure. The MFA was associated with a significant reduction in patients' radiation dose (0 mSv, iqr 0-0.08 vs. 8.87 mSv, iqr 3.67-22.01; P < 0.00001), total fluoroscopy time (0 s, iqr 0-12 vs. 859 s, iqr 545-1346; P < 0.00001), and operator radiation dose (1.55 vs. 25.33 \uce\ubcS per procedure; P < 0.001). In the MFA group, X-ray was not used at all in 72% (96/134) of cases. The acute success and complication rates were not different between the two groups (P = ns). The reduction in patients' exposure shows a 96% reduction in the estimated risks of cancer incidence and mortality and an important reduction in estimated years of life lost and years of life affected. Based on economic considerations, the benefits of MFA for patients and professionals are likely to justify its additional costs. Conclusion This is the first multicentre randomized trial showing that a MFA in the ablation of SVTs dramatically reduces patients' exposure, risks of cancer incidence and mortality, and years of life affected and lost, keeping safety and efficacy.
Engineering thiophene-based nanoparticles to induce phototransduction in live cells under illumination
none10We report that nanoparticles prepared from appropriately functionalized polythiophenes once administered to live cells can acquire phototransduction properties under illumination, becoming photoactive sites able to absorb visible light and convert it to an electrical signal through cell membrane polarization. Amine-reactive fluorescent nanoparticles with pendant N-succinimidyl-ester groups (NPs-NHS) are prepared from polythiophenes alternating unsubstituted and 3-(2,5-dioxopyrrolidin-1-yl-8-octanoate)-substituted thiophenes by a nanoprecipitation method. By 1H NMR of nanoparticles prepared using THF-d8/D2O (solvent/non-solvent) we demonstrate that the hydrolysis of the N-succinimidyl-ester group to free N-hydroxysuccinimide takes place slowly over several hours. NPs-NHS reactivity towards primary amine groups is tested towards the NH2 of D- and L-enantiomers of tryptophan. We show that the formation of a tryptophan-nanoparticle amidic bond creates a chiral shell displaying opposite CD signals for the nanoparticles bound to D or L enantiomers. The interaction of NPs-NHS with live HEK-293 cells is monitored via LSCM. We show that the NPs-NHS are not internalized but remain docked on the cell membrane. We assume that this is mainly the result of the reaction of the NHS groups in the external layer with NH2 groups present in cell membrane proteins, although the contribution of alternative mechanisms cannot be excluded. To support this assumption LSCM experiments show that nanoparticles of comparable size obtained from poly(3-hexylthiophene), NPs-P3HT, are rapidly internalized by live HEK-293 cells. Finally, using the whole-cell current clamp technique under light illumination we demonstrate that NPs-NHS can polarize the cell membrane upon light irradiation while NPs-P3HT cannot.mixedZangoli, M.; Di Maria, F.; Zucchetti, E.; Bossio, C.; Antognazza, M. R.; Lanzani, G.; Mazzaro, R.; Corticelli, F.; Baroncini, M.; Barbarella, G.Zangoli, M.; Di Maria, F.; Zucchetti, E.; Bossio, C.; Antognazza, M. R.; Lanzani, G.; Mazzaro, R.; Corticelli, F.; Baroncini, M.; Barbarella, G
Drug-Refractory Ventricular Tachycardias Following Myocarditis: Endocardial and Epicardial Radiofrequency Catheter Ablation
BACKGROUND: -Ventricular tachycardia (VT) is a significant therapeutic challenge in patients with myocarditis. This study aimed to assess the efficacy and safety of radiofrequency catheter ablation (RFCA) of VT in pts with myocarditis. METHODS AND RESULTS: -We enrolled 20 patients (15 males, age 42 [28-52] years) with a history of biopsy-proven viral myocarditis and drug-refractory VT; 5 patients presented with electrical storm. The median left ventricular ejection fraction was 55 (45-60)%. All patients underwent endocardial RFCA with an irrigated catheter, using contact electroanatomical mapping. Recurrence of sustained VT after endocardial RFCA was treated with additional epicardial RFCA. Endocardial RFCA was acutely successful in 14 patients (70%), while in the remaining 6 (30%) clinical VT was successfully ablated by epicardial RFCA. In one patient, hemodynamic instability required an intraaortic balloon pump to complete RFCA. No major complication occurred during or after RFCAs. Over a median follow-up time of 28 (11-48) months, 18 patients (90%) remained free of sustained VT; two patients (10%, both with baseline LVEF 64 35%) died of acute heart failure unrelated to ventricular arrhythmias. CONCLUSIONS: -In patients with myocarditis, RFCA of drug-refractory VT is feasible, safe and effective. Epicardial RFCA should be considered as an important therapeutic option to increase success rate
A novel oral micellar fenretinide formulation with enhanced bioavailability and antitumour activity against multiple tumours from cancer stem cells
Background: An increasing number of anticancer agents has been proposed in recent years with the attempt to overcome treatment-resistant cancer cells and particularly cancer stem cells (CSC), the major culprits for tumour resistance and recurrence. However, a huge obstacle to treatment success is the ineffective delivery of drugs within the tumour environment due to limited solubility, short circulation time or inconsistent stability of compounds that, together with concomitant dose-limiting systemic toxicity, contribute to hamper the achievement of therapeutic drug concentrations. The synthetic retinoid Fenretinide (4-hydroxy (phenyl)retinamide; 4-HPR) formerly emerged as a promising anticancer agent based on pre-clinical and clinical studies. However, a major limitation of fenretinide is traditionally represented by its poor aqueous solubility/bioavailability due to its hydrophobic nature, that undermined the clinical success of previous clinical trials. Methods: Here, we developed a novel nano-micellar fenretinide formulation called bionanofenretinide (Bio-nFeR), based on drug encapsulation in an ion-pair stabilized lipid matrix, with the aim to raise fenretinide bioavailability and antitumour efficacy. Results: Bio-nFeR displayed marked antitumour activity against lung, colon and melanoma CSC both in vitro and in tumour xenografts, in absence of mice toxicity. Bio-nFeR is suitable for oral administration, reaching therapeutic concentrations within tumours and an unprecedented therapeutic activity in vivo as single agent. Conclusion: Altogether, our results indicate Bio-nFeR as a novel anticancer agent with low toxicity and high activity against tumourigenic cells, potentially useful for the treatment of solid tumours of multiple origin
Onvansertib treatment overcomes olaparib resistance in high-grade ovarian carcinomas
Abstract Occurrence of resistance to olaparib, a poly(ADP-ribose) polymerase (PARP) inhibitor (PARPi) approved in ovarian carcinoma, has already been shown in clinical settings. Identifying combination treatments to sensitize tumor cells and/or overcome resistance to olaparib is critical. Polo-like kinase 1 (PLK1), a master regulator of mitosis, is also involved in the DNA damage response promoting homologous recombination (HR)-mediated DNA repair and in the recovery from the G2/M checkpoint. We hypothesized that PLK1 inhibition could sensitize tumor cells to PARP inhibition. Onvansertib, a highly selective PLK1 inhibitor, and olaparib were tested in vitro and in vivo in BRCA1 mutated and wild-type (wt) ovarian cancer models, including patient-derived xenografts (PDXs) resistant to olaparib. The combination of onvansertib and olaparib was additive or synergic in different ovarian cancer cell lines, causing a G2/M block of the cell cycle, DNA damage, and apoptosis, much more pronounced in cells treated with the two drugs as compared to controls and single agents treated cells. The combined treatment was well tolerated in vivo and resulted in tumor growth inhibition and a statistically increased survival in olaparib-resistant-BRCA1 mutated models. The combination was also active, although to a lesser extent, in BRCA1 wt PDXs. Pharmacodynamic analyses showed an increase in mitotic, apoptotic, and DNA damage markers in tumor samples derived from mice treated with the combination versus vehicle. We could demonstrate that in vitro onvansertib inhibited both HR and non-homologous end-joining repair pathways and in vivo induced a decrease in the number of RAD51 foci-positive tumor cells, supporting its ability to induce HR deficiency and favoring the activity of olaparib. Considering that the combination was well tolerated, these data support and foster the clinical evaluation of onvansertib with PARPis in ovarian cancer, particularly in the PARPis-resistant setting