234 research outputs found

    A new water anomaly: the temperature dependence of the proton mean kinetic energy

    Full text link
    The mean kinetic energy of protons in water is determined by Deep Inelastic Neutron Scattering experiments, performed above and below the temperature of maximum density and in the supercooled phase. The temperature dependence of this energy shows an anomalous behavior, as it occurs for many water properties. In particular two regions of maximum kinetic energy are identified: the first one, in the supercooled phase in the range 269 K - 272 K, and a second one above 273 K. In both these regions the measured proton kinetic energy exceedes the theoretical prediction based on a semi-classical model. Noteworthy, the proton mean kinetic energy has a maximum at 277 K, the temperature of the maximum density of water. In the supercooled metastable phase the measured mean kinetic energy and the proton momentum distribution clearly indicate proton delocalization between two H-bonded oxygens.Comment: 4 pages article 2 figure

    Water-Peptide Site-Specific Interactions: A Structural Study on the Hydration of Glutathione

    Get PDF
    AbstractWater-peptide interactions play an important role in determining peptide structure and function. Nevertheless, a microscopic description of these interactions is still incomplete. In this study we have investigated at the atomic scale length the interaction between water and the tripeptide glutathione. The rationale behind this work, based on the combination between a neutron diffraction experiment and a computer simulation, is twofold. It extends previous studies on amino acids, addressing issues such as the perturbation of the water network brought by a larger biomolecule in solution. In addition, and more importantly, it seeks a possible link between the atomic length scale description of the glutathione-water interaction with the specific biological functionality of glutathione, an important intracellular antioxidant. Results indicate a rather weak hydrogen bond between the thiol (-SH) group of cysteine and its first neighbor water molecule. This -SH group serves as a proton donor, is responsible for the biological activity of glutathione, and it is involved in the formation of glutathione disulfide, the oxidized form of glutathione. Moreover, the hydration shell of the chemically identical carboxylate group on the glutamic acid residue and on the glycine residue shows an intriguing different spatial location of water molecules and coordination numbers around the two CO2− groups

    Multiparameter quantum estimation of noisy phase shifts

    Get PDF
    Phase estimation is the most investigated protocol in quantum metrology, but its performance is affected by the presence of noise, also in the form of imperfect state preparation. Here we discuss how to address this scenario by using a multiparameter approach, in which noise is associated to a parameter to be measured at the same time as the phase. We present an experiment using two-photon states, and apply our setup to investigating optical activity of fructose solutions. Finally, we illustrate the scaling laws of the attainable precisions with the number of photons in the probe state

    Quantum sensors for dynamical tracking of chemical processes

    Full text link
    Quantum photonics has demonstrated its potential for enhanced sensing. Current sources of quantum light states tailored to measuring, allow to monitor phenomena evolving on time scales of the order of the second. These are characteristic of product accumulation in chemical reactions of technologically interest, in particular those involving chiral compounds. Here we adopt a quantum multiparameter approach to investigate the dynamic process of sucrose acid hydrolysis as a test bed for such applications. The estimation is made robust by monitoring different parameters at once

    Performance of Legiolert Test vs. ISO 11731 to Confirm Legionella pneumophila Contamination in Potable Water Samples

    Get PDF
    Detection and enumeration of Legionella in water samples is of great importance for risk assessment analysis. The plate culture method is the gold standard, but has received several well-known criticisms, which have induced researchers to develop alternative methods. The purpose of this study was to compare Legionella counts obtained by the analysis of potable water samples through the plate culture method and through the IDEXX liquid culture Legiolert method. Legionella plate culture, according to ISO 11731:1998, was performed using 1 L of water. Legiolert was performed using both the 10 mL and 100 mL Legiolert protocols. Overall, 123 potable water samples were analyzed. Thirty-seven (30%) of them, positive for L. pneumophila, serogroups 1 or 2–14 by plate culture, were used for comparison with the Legiolert results. The Legiolert 10 mL test detected 34 positive samples (27.6%) and the Legiolert 100 mL test detected 37 positive samples, 27.6% and 30% respectively, out of the total samples analyzed. No significant di_erence was found between either the Legiolert 10 mL and Legiolert 100 mL vs. the plate culture (p = 0.9 and p = 0.3, respectively) or between the Legiolert 10 mL and Legiolert 100 mL tests (p = 0.83). This study confirms the reliability of the IDEXX Legiolert test for Legionella pneumophila detection and enumeration, as already shown in similar studies. Like the plate culture method, the Legiolert assay is also suitable for obtaining isolates for typing purposes, relevant for epidemiological investigations

    Local structure of temperature and pH-sensitive colloidal microgels

    Get PDF
    The temperature dependence of the local intra-particle structure of colloidal microgel particles, composed of interpenetrated polymer networks, has been investigated by small-angle neutron scattering at different pH and concentrations, in the range (299÷315) K, where a volume phase transition from a swollen to a shrunken state takes place. Data are well described by a theoretical model that takes into account the presence of both interpenetrated polymer networks and cross-linkers. Two different behaviors are found across the volume phase transition. At neutral pH and T 307 K, a sharp change of the local structure from a water rich open inhomogeneous interpenetrated polymer network to a homogeneous porous solid-like structure after expelling water is observed. Differently, at acidic pH, the local structure changes almost continuously. These findings demonstrate that a fine control of the pH of the system allows to tune the sharpness of the volume-phase transition

    Case Report: First Report of Fatal Legionella pneumophila and Klebsiella pneumoniae Coinfection in a Kidney Transplant Recipient

    Get PDF
    A very rare case of pulmonary Klebsiella pneumoniae-Legionella pneumophila coinfection in a double kidney transplanted man affected by the chronic renal disease is described. Cases of Legionnaires’ disease with an incubation period of 14 days have rarely been documented. Despite the long period of hospitalization, typing of clinical and environmental L. pneumophila strains demonstrated that the patient’s home water distribution system was the source of infection, highlighting that Legionella house contamination can be a hidden risk, especially for immune-compromised people

    Effect of ciprofloxacin-loaded niosomes on escherichia coli and staphylococcus aureus biofilm formation

    Get PDF
    Infections caused by bacterial biofilms represent a global health problem, causing considerable patient morbidity and mortality in addition to an economic burden. Escherichia coli, Staphylococcus aureus, and other medically relevant bacterial strains colonize clinical surfaces and medical devices via biofilm in which bacterial cells are protected from the action of the immune system, disinfectants, and antibiotics. Several approaches have been investigated to inhibit and disperse bacterial biofilms, and the use of drug delivery could represent a fascinating strategy. Ciprofloxacin (CIP), which belongs to the class of fluoroquinolones, has been extensively used against various bacterial infections, and its loading in nanocarriers, such as niosomes, could support the CIP antibiofilm activity. Niosomes, composed of two surfactants (Tween 85 and Span 80) without the presence of cholesterol, are prepared and characterized considering the following features: hydrodynamic diameter, ζ-potential, morphology, vesicle bilayer characteristics, physical-chemical stability, and biological efficacy. The obtained results suggest that: (i) niosomes by surfactants in the absence of cholesterol are formed, can entrap CIP, and are stable over time and in artificial biological media; (ii) the CIP inclusion in nanocarriers increase its stability, with respect to free drug; (iii) niosomes preparations were able to induce a relevant inhibition of biofilm formation

    Improvement of Legionnaires' disease diagnosis using real-time PCR assay: a retrospective analysis, Italy, 2010 to 2015

    Get PDF
    AimTo evaluate real-time PCR as a diagnostic method for Legionnaires' disease (LD). Detection of Legionella DNA is among the laboratory criteria of a probable LD case, according to the European Centre for Disease Prevention and Control, although the utility and advantages, as compared to culture, are widely recognised.MethodsTwo independent laboratories, one using an in-house and the other a commercial real-time PCR assay, analysed 354 respiratory samples from 311 patients hospitalised with pneumonia between 2010-15. The real-time PCR reliability was compared with that of culture and urinary antigen tests (UAT). Concordance, specificity, sensitivity and positive and negative predictive values (PPV and NPV, respectively) were calculated.ResultsOverall PCR detected eight additional LD cases, six of which were due to Legionella pneumophila (Lp) non-serogroup 1. The two real-time PCR assays were concordant in 99.4% of the samples. Considering in-house real-time PCR as the reference method, specificity of culture and UAT was 100% and 97.9% (95% CI: 96.2-99.6), while the sensitivity was 63.6% (95%CI: 58.6-68.6) and 77.8% (95% CI: 72.9-82.7). PPV and NPV for culture were 100% and 93.7% (95% CI: 91.2-96.3). PPV and NPV for UAT were 87.5% (95% CI: 83.6-91.4) and 95.8% (95% CI: 93.5-98.2).ConclusionRegardless of the real-time PCR assay used, it was possible to diagnose LD cases with higher sensitivity than using culture or UAT. These data encourage the adoption of PCR as routine laboratory testing to diagnose LD and such methods should be eligible to define a confirmed LD case

    Synthesis and characterization of TEOS coating added with innovative antifouling silica nanocontainers and TiO2 nanoparticles

    Get PDF
    We study the synthesis and characterisation of an innovative TEOS-based composite coating, which could improve previous formulations used in the field of monument conservation. The proposed coating is composed by a tetraethoxyorthosilicate matrix (TEOS), containing an elasticiser (hydroxyl-terminated polydimethylsiloxane (PDMS-OH)) and a non-ionic surfactant (n-octylamine). The specific self-cleaning and antifouling properties are obtained by the addition of different kinds of nanofillers: the commercial TiO2 nanoparticles, plus two different silica nanocontainers, loaded with the commercial biocide 2-mercaptobenzothiazole. Through a multi-analytical approach, we evaluate the effect of the nanoparticles concentration on the coatings drying rate, on the variation of their visual aspect and textural properties. Our results show that the addition of the silica nanocontainers at 0.05% (w/v) in sol does not change the colour of the coating and reduces the formation of cracks after drying. Moreover, the coating charged with nanocontainers undergoes slower drying, thus improving its penetration into the pores of the treated surface. Further tests of photocatalytic and biocidal properties of this new product on different lithotypes and their potential interactions are in progress
    • …
    corecore