
Multiparameter approach to quantum phase
estimation with limited visibility
EMANUELE ROCCIA,1 VALERIA CIMINI,1 MARCO SBROSCIA,1,* ILARIA GIANANI,1 LUDOVICA RUGGIERO,1

LUCA MANCINO,1 MARCO G. GENONI,2 MARIA ANTONIETTA RICCI,1 AND MARCO BARBIERI1,3

1Dipartimento di Scienze, Università degli Studi Roma Tre, Via della Vasca Navale 84, 00146 Rome, Italy
2Quantum Technology Lab, Dipartimento di Fisica, Università degli Studi di Milano, 20133 Milan, Italy
3Istituto Nazionale di Ottica—CNR, Largo Enrico Fermi 6, 50125 Florence, Italy
*Corresponding author: marco.sbroscia@uniroma3.it

Received 16 April 2018; revised 26 June 2018; accepted 23 July 2018 (Doc. ID 328571); published 24 September 2018

Optical sensors based on quantum light need to work even in the presence of imperfections. Here we discuss how to
address the presence of noise by measuring multiple parameters at once: those we seek to monitor and those linked to
the imperfections. Our method is applied to the investigation of the optical activity of sugary solutions limited by
reduced visibility. These studies introduce multiparameter estimation as a viable approach to allow for robust oper-
ation of quantum sensors as they are developed from fundamental research to technology. © 2018 Optical Society of

America under the terms of the OSA Open Access Publishing Agreement
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1. INTRODUCTION

The identification of genuine properties of a system, from single
molecules to complex composite systems, represents a primary
goal for physical and chemical analysis. As metrological require-
ments become increasingly demanding in terms of performance,
understanding the ultimate precision achievable in the estimation
of a parameter represents a key issue. In this respect, quantum
metrology, aiming at designing protocols to perform optimal
measurements, figures as an appealing and intriguing field of
research and applications [1,2].

Phase estimation has long represented the heart of quantum
metrology [3–5]: in a large number of technological areas, the
estimation problem is concerned with determining a single
parameter, and this is typically manifested as a phase shift of
the quantum state describing the probe. The engineering of such
a state then aims at providing the optimal choice for an enhanced
sensitivity in the estimation: particular families of states, as
squeezed [6–8] or many-body N00N states [4,9–11], are often
used to feed interferometers, showing how nonclassicality repre-
sents the primary ingredient of the probe states. Nevertheless, an
increase in sensitivity balances the robustness of the quantum
state: the more informative these resources are, the more fragile
and difficult they are to obtain. The promised quantum advantage
can be indeed easily spoiled by ungoverned or spurious couplings
with the environment, as it has been shown in the case of inter-
ferometry [12–17], and subsequently described in more general
no-go theorems [18,19].

In order to circumvent these no-go theorems and observe a
quantum enhancement also in the context of noisy quantum

metrology, several different approaches have been pursued, based
on either considering noise with a particular geometry [20,21],
time-inhomogeneous dynamics [22–26], quantum control and
error correction methods [27–36], or time-continuous monitor-
ing of the environment [37]; in all these metrological schemes, a
proper characterization of the noise affecting the system is, how-
ever, required. It is not always the case that such characterization
can be performed in advance: for instance, in time-varying cases,
the noise process itself can change, and it is then important to
design strategies that treat the assessment of both unitary param-
eters, such as phases, and dissipative parameters, including loss or
phase diffusion, at an equal pace by demanding a multiparameter
approach. Such extended characterization is akin in spirit to chan-
nel tomography [8,38,39], aside from the important difference
that one allows for a single choice of probes and not for a tomo-
graphically complete family. The multiparameter approach has
been the subject of intensive research over the last few years,
and this has highlighted the emergence of a trade-off in the
achievable precision on individual parameters in many practical
instances, ranging from simultaneous estimation of multiple
phases (or in general unitary parameters) [40–46] to the case
of both unitary and noisy parameters [47–51]. On the other
hand, working in a multiparameter setting also brings the advan-
tage of making the estimation process more robust against small
deviations of the designed probes from the optimal states [49].

Here we present an estimation experiment in which the multi-
parameter approach is followed to obtain the value of a phase shift
and, at the same time, a reliable estimate of the quality of the
probe, as measured by the visibility of the interference fringes.
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Differently from [17], where phase estimation with not perfectly
indistinguishable photons is investigated, the resources are
devoted to both estimation tasks. Hence, by estimating both
quantities at the same time, it is possible to reduce biases due
to an uncertain knowledge of the probe. We apply this method
to the investigation of chiral aqueous solutions of fructose inves-
tigated by two-photon N00N states. When focusing on mode
indistinguishability, the theoretical generalization to higher pho-
ton numbers N demonstrates a variation in the scaling associated
to the precision on phase and mode distinguishability depending
on the working conditions.

2. TWO-PARAMETER ESTIMATION OF PHASE
AND VISIBILITY

A common setup in quantum phase estimation uses single-
photon pairs produced via a spontaneous parametric downconver-
sion (SPDC) process: in the typical scheme, the two photons are
first combined on a beam splitter (BS), so that Hong–
Ou–Mandel interference [52] produces in a N00N state with
N � 2, i.e., a state in a superposition of two photons being
present in either mode and none on the other. The monitored
element, imparting a phase shift ϕ, is then inserted on one of
the modes, with the other left unperturbed. The detection scheme
has the two modes recombined on a second BS and photon coun-
ters on the outputs. The combination of the nonclassicality of the
state and of the optimality of the measurement choice results in
oscillations of the photon counting probabilities occurring with a
phase 2ϕ, hence, in a superior precision than attainable with
classical light of the same average energy. This strategy, although
effective, clashes with the non-ideal visibility v of the two-photon
interference on the two BSs: a second characteristic parameter to
be estimated is then introduced. This sets the modulation depth
of the oscillations, and it is necessary to know it to recover the
correct value of ϕ. An incorrect assessment of v would determine
a bias on the estimation of the phase. The value of v is limited
both by the distinguishability of the two photons in spectral and
spatial degrees of freedom, but also to dephasing or depolarization
mechanisms taking place inside the sample. Therefore, a prelimi-
nary calibration performed under conditions which do not reflect
those present at the time of phase estimation might weaken the
metrological capabilities of the protocol. We have then explored
the alternative approach of assessing the values of ϕ and v
simultaneously.

Figure 1 shows the experimental apparatus we used to imple-
ment the phase estimation. Two photons with mutually orthogo-
nal polarizations, horizontal (H ) and vertical (V ), are combined
on a polarizing beam splitter (PBS). Having very similar spectra,
the two photons are highly indistinguishable, and their perfect
interference would produce the N00N state in the left- (L)
and right-circular (R) polarization modes,

â†H â
†
V j0i �

1

2
��â†R�2 − �â†L�2�j0i

� 1ffiffiffi
2

p �j2R , 0Li − j0R , 2Li�: (1)

Introducing a phase ϕ on the R mode is equivalent to rotating a
linear polarization by an angle ϕ∕2 and modifies the state as

jψi � cos ϕâ†H â
†
V j0i − sin ϕ

�â†H �2 − �â†V �2
2

j0i: (2)

The phase ϕ modulates the populations in the states j↑i �
j1H , 1V i and j↓i � �j2H , 0V i − j0H , 2V i�∕

ffiffiffi
2

p
, which represent

the basis of an effective two-level system, i.e., a qubit. The detec-
tion scheme consists of a half-wave plate (HWP) and a second
PBS, allowing the selection of arbitrary linear polarizations via
the angular position θ of the HWP. Photon counting is
performed by fiber-coupled avalanche photodiodes (APD) placed
on each of the two output arms from the PBS. In the realistic
case when the modulations in the state defined in Eq. (2) occur
with visibility v, the relevant detection probabilities are

p�1jθ;ϕ, v� � 1

1� v
�1� v cos�8θ − 2ϕ��,

p�2jθ;ϕ, v� � v
1� v

sin2�4θ − ϕ�, (3)

where p�1jθ;ϕ, v� describes the probability of a coincidence
count between the two arms (associated to j↑i), and
p�2jθ;ϕ, v� is the probability of finding two photons in one
arm (both events are associated to j↓i); the proper normalization
is p�1jθ;ϕ, v� � 2p�2jθ;ϕ, v� � 1. Because of the underlying
single-qubit structure of the state in Eq. (2), at least two settings
of θ must be chosen to resolve the two parameters; this amounts
to performing a positive-operator-valued measurement (POVM)
with 2 × 3 outcomes. Furthermore, since our detectors cannot re-
solve the photon number, we have actually adopted four settings
of θ (viz. θ � f0, π∕16, π∕8, 3π∕16g) and used the post-selected
probabilities,

p�θj1;ϕ, v� � 1

4
�1� v cos�8θ − 2ϕ��, (4)

which only consider the coincidence events for each setting. In the
post-selection picture, the probability above treats θ as the out-
come of the measurement scheme. Assuming that the four
settings are in fact performed randomly, each one with probability
1/4, Eq. (4) quantifies the probability that the coincidence event
detected corresponds to the particular setting θ. Data are collected
in the form of a vector, n̄, formed by four coincidence count rates
nθ, associated to each setting θ � f0, π∕16, π∕8, 3π∕16g; there-
fore, we post-select four out of the possible 4 × 3 outcomes.

An experimental joint distribution for the measured values of
ϕ and v is obtained by Bayesian estimation. This consists in using

Fig. 1. Experimental setup: each one of the two single photons (wave-
length 810 nm) of the pair generated via type-I SPDC from a beta barium
borate (BBO, 3 mm length) nonlinear crystal excited via a continuous-wave
(80 mW power) pump laser passes through a half-wave plate (HWP1 at
0° and HWP2 at 45°) before being combined on a polarized beam splitter
(PBS1). These photons are used to estimate the birefringent phase imparted
by the optical activity of a chiral solution. A wave plate (HWP3) and a
second polarizer (PBS2) project the outcoming photons onto different
polarizations. In the calibration procedure, an additional HWP, not sketched
here, replaces the solution to impart a well-defined phase.
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Bayes’s theorem to update the a priori joint probability PA�ϕ, v�,
based on the knowledge of the measured values nθ: PB�ϕ, vjn̄� �
N PA�ϕ, v�

Q
θp�θj1;ϕ, v�nθ (N is a normalization constant).

3. EXPERIMENTAL RESULTS

We have tested the performance of our experiment with a cali-
bration step by inserting an additional HWP between the two
PBSs; this imparts a set phase φ depending on its angle setting
and provides the metrological capabilities of our multiparameter
strategy. Figure 2(a) shows, as a function of the imparted phase,
the results of the measured of ϕ and v from PB�ϕ, vjn̄�, quantified
as the first moments of the marginal distributions ϕB and vB ,

ϕB �
Z

ϕPB�ϕ, vjn̄�dϕdv,

vB �
Z

vPB�ϕ, vjn̄�dϕdv, (5)

with the integration limits set by the width of PA�ϕ, v�. A linear
regression of the values highlights the goodness of the phase
estimation ϕ, as its slope is sϕ � 1.011� 0.004, in agreement
with the expected value 1. Concerning the visibility, the estima-
tion appears to be affected by fluctuations around a constant
mean value instead, as the slope of the linear fit of that data con-
firms, sv � −0.001� 0.003. Such fluctuations are likely to arise
from a slight difference in the optical coupling of the initial H
photon into each the two detection fibers and similarly for the

V photon; this asymmetry comes from free-space operation
and can be strongly mitigated by the use of guided optics in actual
devices.

A more stringent test in metrology is the verification of the
Cramér–Rao bound (CRB). This sets a lower bound to the covari-
ance matrix Σ of the estimated parameters, whose elements are
defined as the second moments of PB�ϕ, vjn̄�,

Δ2ϕ � Σϕ,ϕ �
Z

�ϕ − ϕB�2PB�ϕ, vjn̄�dϕdv,

Δ2v � Σv,v �
Z

�v − vB�2PB�ϕ, vjn̄�dϕdv,

Σϕ,v � Σv,ϕ �
Z

�ϕ − ϕB��v − vB�PB�ϕ, vjn̄�dϕdv: (6)

The measurement strategy is characterized by its Fisher informa-
tion matrix F , whose elements are

F ij �
X
θ

∂ip�θjϕ, v�∂jp�θjϕ, v�
p�θjϕ, v� , (7)

with i and j able to correspond to either ϕ or v. The CRB
asserts that, given a number of trials M , the covariance matrix
is bounded as

Σ ≥ F −1∕M: (8)

This matrix inequality holds in the asymptotic limit of a large
number of trials and sets lower bounds for the individual

(a) (b)

(c) (d)

Fig. 2. Multiparameter Bayesian estimation for setup calibration. (a) Estimated phase (blue triangles, left scale) and visibility (green circles; right scale)
versus calibration phase, φ, imparted by an HWP. Dashed lines are linear fit of data. (b) and (c) Estimated variance (times the number of resourcesM ) for
(b) visibility and (c) phase as a function of the imparted phase. The dashed line represents the corresponding CRBs. (d) Estimated covariance for the
visibility and phase as a function of the imparted phase. The dashed line represents the corresponding CRB. All covariance matrices have been estimated
from M ≃ 70 K repetitions. Error bars are smaller than the marker size for all data.
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precisions Δ2ϕ and Δ2v, as well as on their covariance Σϕ,v. The
conditional probabilities in Eq. (7), describing our experiment,
correspond to the post-selected coincidence events of our detec-
tors. The effect of post-selection on estimation precision has been
described in detail in the literature [53,54], and the consequences
on our experimental results are better discussed in Supplement 1.
It is important to note that, while post-selection has typically
been investigated as a tool to enhance estimation precision, in
our case it is a consequence of the limitation of the experimental
setup. In Fig. 2 we report the measured uncertainties and covari-
ance in very good agreement to the expected values predicted
by the CRB in Eq. (8) with M � P

θnθ. Oscillations of the
attainable precisions in Eq. (6) can be observed: the available
information is distributed between the phase and the visibility,
depending on the value of ϕ; covariances are modulated as well,
and the best estimation for either individual parameter corre-
sponds to minimal correlation.

As an application of our protocol, we perform the estimation
of the phase imparted by aqueous solutions of fructose. It is
common knowledge that sugars are an interesting example of chi-
ral molecules, able to impart a rotation to an initial linear polari-
zation. Monitoring their optical activity via light–matter coupling
can thus represent a valuable approach to infer information on
their interaction with the surroundings. The most relevant
environment for their application is the aqueous solution: inves-
tigation with quantum light has been undertaken in [55] in a
single-parameter approach. Figure 3 reports the Bayesian joint
probability distribution for two different sugar aqueous solutions,
namely, fructose (F) and sucrose (S), at the same nominal con-
centration of c � 0.3 g∕ml. The upper 3D plots show the recon-
structed distributions, which give back the following average
values ϕF � −0.145 rad and ϕS � 0.089 rad, consistent with
the values obtained by using the classical light of a close wave-
length (808 nm) in the same apparatus. The underlying contour

plots show the difference between the reconstructed distribution
and the expected Gaussian saturating the CRB; for both concen-
trations, the deviations remain of the order of 0.01. In order to
assess quantitatively how close our estimation lies to the CRB, we
adopt the likelihood ratio test predicting that, under the null
hypothesis that Σ saturates Eq. (8), the variable

l � M 2 Tr�F · Σ� −M�ln det�Σ� � ln det�MF �� − 2 (9)

is distributed as the χ2 variable with 3 deg of freedom [56]. The
measured values for the two concentrations are l F � 2.63
and l S � 0.10, both compatible with the critical value 7.81
for the 95% confidence interval (see Supplement 1).

4. SCALING LAWS FOR MULTIPARAMETER
ESTIMATION

The usefulness of quantum resources is typically assessed by look-
ing at how the precision of given parameters scales with the num-
ber of photons N in the probe. For optical phase estimation,
quantum probes can reach a scaling law of the Fisher information
as N 2, while classical resources are limited to N . For loss, the
Fisher information grows with N for both classical and quantum
probes [57,58]. For these purposes, we generalized to states with
2N photons: we consider Holland–Burnett (HB) states [59] that
are obtained by quantum interference of two N photon states
arriving on input modes with creation operators a†H and b†V ,
which are made to interfere. Note that HB states that are equiv-
alent to N00N states for N � 2, with each photon entering in
one arm of the interferometer, yield the same quantum enhanced
scaling ∼1∕N 2 in the estimation precision for a generic number
of photons; moreover, compared to N00N states, they are more
feasible in terms of laboratory resources and have been also shown
to be more robust in the presence of loss [15].

As explained in the previous section, a phase ϕ is then inserted,
and the detection scheme considers a second interference,

Fig. 3. Upper panels: Bayesian joint probabilities for visibility, V , and phase,Φ; the joint distribution is normalized to unit. Lower panels: difference of
the experimental density probability with respect to the one at the CRB for (a) fructose aqueous solution with 0.3 g/ml nominal concentration and
(b) sucrose aqueous solution with 0.3 g/ml nominal concentration. A numberM ≃ 50 K andM ≃ 75 K of repetitions have been employed for fructose
and sucrose, respectively. The expected probabilities are calculated as a two-dimensional Gaussian with covariance matrix F −1∕M ; the observed
differences between the experiment and the prediction are partly due to deviations from this shape. The V and Φ are the same for the upper and
lower panels.
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followed by photon-number resolving detectors on each arm. In
order to account for distinguishability, we take the standard de-
composition b†V �

ffiffiffiffiffiffiffiffiffiffiffi
1 − ϵ2

p
a†V � ϵq†V , where a†V interferes per-

fectly with a†H , while q†V does not. The parameter ϵ defines
the distinguishability of the two modes: from ϵ � 0 for perfect
indistinguishability to ϵ � 1 for complete distinguishability. We
are interested in how the available Fisher information associated
to ϕ and to ϵ scales with the number of photons N ; we use as
quantifiers the effective values F̃ i,i � 1∕�F −1�i,i for i � ϕ, ϵ,
optimized over all possible phases.

The results of our numerical simulations are reported in
Figs. 4(a) and 4(b). For moderate distinguishability, the effective
Fisher information on ϕ decreases with respect to its value
2N �N � 1� at ϵ � 0 [59], but retains a quicker growth than
the classical scaling as N , obtained for ϵ � 1. Nevertheless, while
the effective Fisher information F̃ϕϕ is reduced due to the presence
of correlation between the two parameters, the plot leads us to
conjecture that, as observed in [17] for the phase-estimation-only
problem, an asymptotic quadratic scaling is maintained also for
distinguishability 0 < ϵ < 1. Regarding the distinguishability ϵ,
we remark upon a non-monotonic behavior: the information initially
decreases with respect to the linear scaling, but a quadratic behavior
2N 2 is eventually observed in the limit ϵ � 1. Since the phase is the
parameter of main interest, even a slow scaling for the uncertainty on
the visibility can be tolerated, as long as its estimation remains useful.

The optimal values of F̃ϕ,ϕ and F̃ ϵ,ϵ, however, are obtained for
different phases ϕ; in general, it is not possible to satisfy the
optimality conditions for both parameters at once. In order to
understand how the information is partitioned, we adopt the
parameter

ϒ � max
γ

�
F̃ϕ,ϕ�γ�

maxαF̃ϕ,ϕ�α�
� F̃ ϵ,ϵ�γ�

maxβF̃ ϵ,ϵ�β�

�
: (10)

We remark that this figure of merit does not quantify the over-
all performance of the estimation scheme that, as demonstrated
above, generally increases with the number of photons N . Its goal
is in turn to study the multi-parameter estimation problem from a
more fundamental point of view and to quantify how close one
can get to the optimal estimation precision simultaneously for
both parameters. To this aim, we calculate the sum of the ratios
between the effective Fisher information for ϕ and ϵ, respectively,
and their maximum values, optimized for a particular value of ϕ.
The corresponding results are show in Fig. 4(c): for each value of ϵ
there exists a value of N that achieves the best compromise in the

jointly attainable precision. Our numerical results also suggest
that, while for highly noisy probes (large values of ϵ ) the optimal
value occurs for small N , for nearly ideal probes (small values of
ϵ), optimality is reached for larger values of N , where the quan-
tum enhancement in the phase estimation is more prominent.

5. CONCLUSIONS

Multiparameter estimation can be an effective way to tackle the prob-
lem of operating quantum sensors in the presence of noise, an
unavoidable challenge in realistic conditions. We have applied such
an approach to integrate phase estimation with a simultaneous char-
acterization of the probe, by measuring phase and visibility of inter-
ference fringes at once. Depending on the value of the phase,
oscillations in the achieved precision on individual parameters are
observed, and correlations are introduced. Themeasurement scheme
has been used to investigate the optical activity of fructose solutions.
Numerical simulations have been undertaken to study how the pre-
cisions scale with the photon number in Holland–Burnett states.

Our results highlight the presence of trade-off conditions, as
part of the information need is devoted to determining the quality
of the probe at the expense of the precision on the phase.
Realizing the promises of quantum sensing will require under-
standing the price of achieving robust operation in unfavorable
conditions; our study is an important step in this direction.
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24. A. Smirne, J. Kołodyński, S. F. Huelga, and R. Demkowicz-Dobrzański,
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