17 research outputs found

    Studying the effect of modifying additives on the hydration and hardening of cement composites for 3D printing

    Get PDF
    The development and application of multicomponent multifunctional additives for cement composites is an important research area since the use of such additives allows controlling both the rheological properties of fresh mixtures and the physical and mechanical properties of the hardened composite. In our study, we used several additives, including metakaolin and xanthan gum together with tetrapotassium pyrophosphate and a SiO2 based complex additive, to modify cementitious sand-based materials. We studied the peculiarities of the influence of these additives on the technological characteristics of mixtures (plasticity and shape retention) and the processes of setting, hydration, and hardening of the composite materials. The optimal values of plasticity, for stability, acceleration of hardening were demonstrated by sand-based systems modified with a complex nanosized additive and metakaolin. The hydration products in the such systems are mainly formed from low basic hydroxides. Metakaolin also results in the formation of ettringite. These systems demonstrate the optimal time of the beginning of setting and the maximum strength gain of the modified cementitious sand-based materials at 28 days. The optimal ratio of indicators of plasticity and shape retention of cement mixtures and the strength of composites based on them obtained by using the studied additives allows us to recommend using these additives in the innovative technologies for 3D-build printing

    Study of the strength regulation factors for the adhesive bonding “cement matrix – reinforcing fiber” in composites for 3D-build printing

    Get PDF
    ABSTRACT: Introduction. As part of the solution for the problem of creating a new class of materials for building additive technologies, cement composites reinforced with high-strength fiber, this work presents the results of experimental studies of the strength of the adhesive bonding between cement matrices and reinforcing fibers with different chemical compositions, diameters, and tensile strength. Materials and methods. Rheological properties of cement systems were studied using shear and squeeze rheometry, the method of micromechanical testing for determining the strength of the adhesive bonding “cement matrix – reinforcing fiber” based on the pull-out test, which involves pulling out the fiber from the cement matrix layer; after the pull-out test for all the studied systems, the microstructure of the contact surface “cement matrix – reinforcing fiber” was assessed using a Thermo Scientific™ Phenom™ Desktop SEM scanning electron microscope; the compressive strength of hardened cement paste-samples was determined using an INSTRON Sates 1500HDS testing machine. Results and discussions. It was established that the combination of strength characteristics of matrices, fibers, and adhesive strength at their interface allowed securing the required strength characteristics of reinforced construction composites. In the “cement matrix – carbon fiber” systems, the value of adhesive strength was 9 – 11 MPa; in the “cement matrix – steel wire” systems, the value of adhesive strength was 3 – 4 MPa. Conclusions. Matrices with viscosity modifiers containing nano- and micro-sized particles of SiO2 (complex nano-sized additive and metakaolin) are reasonable options for combinations of the “cement matrix – reinforcing fiber” components. Carbon fiber and steel wire are recommended to be used as reinforcing fibers

    MWCNTs of different physicochemical properties cause similar inflammatory responses, but differences in transcriptional and histological markers of fibrosis in mouse lungs

    Get PDF
    Multi-walled carbon nanotubes (MWCNTs) are extensively produced and used in composite materials and electronic applications, thus increasing risk of worker and consumer exposure. MWCNTs are an inhomogeneous group of nanomaterials that come in various lengths, shapes and with different metal contaminations, which makes hazard evaluation difficult. However, several studies suggest that length plays an important role in the toxicity induced by MWCNTs. How the length influences toxicity at the molecular level is yet to be characterized. Female C57BL/6 mice were exposed by single intratracheal instillation to 18, 54 or 162 µg/mouse of a short MWCNT (NRCWE-026, 847±102 nm in length) or long MWCNT (NM-401, 4048±366 nm in length). The two MWCNTs were extensively characterized. Lung tissues were harvested 24 h, 3 d and 28 d after exposure. We employed DNA microarrays, bronchoalveolar lavage fluid analysis, comet assay and dichlorodihydrofluorescein assay in order to profile the pulmonary responses. Bioinformatics tools were then applied to compare and contrast the expression profiles and to build a length dependent property-response matrix for gene-by-gene comparison. The toxicogenomic analysis of the global mRNA changes after exposure to the short, entangled NRCWE-026 or the longer, stiffer NM-401 showed high degree of similarities. The toxicity of both MWCNTs was driven by strong inflammatory and acute phase responses, which peaked at day 3 and was observed both in bronchoalveolar lavage cell influx and in gene expression profiles. The inflammatory response was sustained at post-exposure day 28. Also, at the sub-chronic level, we identified a sub-set of 14 fibrosis related genes that were uniquely differentially regulated after exposure to NM-401. Acellular ROS production occurred almost exclusively with NRCWE-026, however the longer NM-401 induced in vivo DNA strand breaks and differential regulation of genes involved in free radical scavenging more readily than NRCWE-026. Our results indicate that the global mRNA response after exposure to MWCNTs is length independent at the acute time points, but that fibrosis may be length dependent sub-chronic end point.JRC.H.6-Digital Earth and Reference Dat

    Fibrillar vs crystalline nanocellulose pulmonary epithelial cell responses: Cytotoxicity or inflammation?

    No full text
    Nanocellulose (NC) is emerging as a highly promising nanomaterial for a wide range of applications. Moreover, many types of NC are produced, each exhibiting a slightly different shape, size, and chemistry. The main objective of this study was to compare cytotoxic effects of cellulose nanocrystals (CNC) and nanofibrillated cellulose (NCF). The human lung epithelial cells (A549) were exposed for 24 h and 72 h to five different NC particles to determine how variations in properties contribute to cellular outcomes, including cytotoxicity, oxidative stress, and cytokine secretion. Our results showed that NCF were more toxic compared to CNC particles with respect to cytotoxicity and oxidative stress responses. However, exposure to CNC caused an inflammatory response with significantly elevated inflammatory cytokines/chemokines compared to NCF. Interestingly, cellulose staining indicated that CNC particles, but not NCF, were taken up by the cells. Furthermore, clustering analysis of the inflammatory cytokines revealed a similarity of NCF to the carbon nanofibers response and CNC to the chitin, a known immune modulator and innate cell activator. Taken together, the present study has revealed distinct differences between fibrillar and crystalline nanocellulose and demonstrated that physicochemical properties of NC are critical in determining their toxicity

    Nanoparticle Adhesion to the Cell Membrane and Its Effect on Nanoparticle Uptake Efficiency

    Get PDF
    <p>The interactions between nanosized particles and living systems are commonly mediated by what adsorbs to the nanoparticle in the biological environment, its biomolecular corona, rather than the pristine surface. Here, we characterize the adhesion toward the cell membrane of nanoparticles of different material and size and study how this is modulated by the presence or absence of a corona on the nanoparticle surface. The results are corroborated with adsorption to simple model supported lipid bilayers using a quartz crystal microbalance. We conclude that the adsorption of proteins on the nanoparticle surface strongly reduces nanoparticle adhesion in comparison to what is observed for the bare material. Nanoparticle uptake is described as a two-step process, where the nanoparticles initially adhere to the cell membrane and subsequently are internalized by the cells via energy-dependent pathways. The lowered adhesion in the presence of proteins thereby causes a concomitant decrease in nanoparticle uptake efficiency. The presence of a biomolecular corona may confer specific interactions between the nanoparticle-corona complex and the cell surface including triggering of regulated cell uptake. An important effect of the corona is, however, a reduction in the purely unspecific interactions between the bare material and the cell membrane, which in itself disregarding specific interactions, causes a decrease in cellular uptake. We suggest that future nanoparticle-cell studies include, together with characterization of size, charge, and dispersion stability, an evaluation of the adhesion properties of the material to relevant membranes.</p>

    Nanoformulations for drug delivery: safety, toxicity, and efficacy

    No full text
    This chapter presents an outline of the recent available information regarding safety, toxicity, and efficacy of nano drug delivery systems. Of particular importance is the evaluation of several key factors to design nontoxic and effective nanoformulations. Among them, we focus on nanostructure materials and synthesis methods, mechanisms of interactions with biological systems, treatment of nanoparticles, manufacture impurities, and nanostability. Emphasis is given to in silico, in vitro, and in vivo models used to assess and predict the toxicity of these new formulations. Additionally, some examples of in vitro and in vivo studies of specific nanoderivatives are also presented in this chapter

    Imogolite: An Aluminosilicate Nanotube Endowed with Low Cytotoxicity and Genotoxicity

    Get PDF
    High-aspect-ratio nanomaterials (HARN) (typically, single-walled carbon nanotubes (SWCNT) or multiwalled carbon nanotubes (MWCNT)) impair airway barrier function and are toxic to macrophages. Here, we assess the biological effects of nanotubes of imogolite (INT), a hydrated aluminosilicate [(OH)3Al2O3SiOH] occurring as single-walled NT, on murine macrophages and human airway epithelial cells. Cell viability was assessed with resazurin. RT-PCR was used to study the expression of Nos2 and Arg1, markers of classical or alternative macrophage activation, respectively, and nitrite concentration in the medium was determined to assess NO production. Epithelial barrier integrity was evaluated from the trans-epithelial electrical resistance (TEER). Potential genotoxicity of INT was assessed with comet and cytokinesis-block micronucleus cytome assays. Compared to MWCNT and SWCNT, INT caused much smaller effects on RAW264.7 and MH-S macrophage viability. The incubation of macrophages with INT at doses as high as 120 μg/cm2 for 72 h did not alter either Nos2 or Arg1 expression nor did it increase NO production, whereas IL6 was induced in RAW264.7 cells but not in MH-S cells. INT did not show any genotoxic effect in RAW264.7 and A549 cells except for a decrease in DNA integrity observed in epithelial A549 cells after treatment with the highest dose (80 μg/cm2). No significant change in permeability was recorded in Calu-3 epithelial cell monolayers exposed to INT, whereas comparable doses of both SWCNT and MWCNT lowered TEER. Thus, in spite of their fibrous nature, INT appear not to be markedly toxic for in vitro models of lung−blood barrier cell
    corecore