2,632 research outputs found

    Ytterbium- and chromium-doped fibre laser: from chaotic self-pulsing to passive Q-switching

    Get PDF
    A spontaneously chaotic, self-pulsing ytterbium-doped fibre laser is partially stabilized into the passively Q-switched mode of operation using a chromium-doped saturable absorber fibre. This original all-fibre laser produces sustained and stable trains of smooth pulses at high repetition rate.Comment: 1 page abstract; at 20th International laser physics workshop, Sarajevo : Bosnia And Herzegovina (2011

    Estimates of genetic differentiation measured by FST do not necessarily require large sample sizes when using many SNP markers

    Get PDF
    Population genetic studies provide insights into the evolutionary processes that influence the distribution of sequence variants within and among wild populations. FST is among the most widely used measures for genetic differentiation and plays a central role in ecological and evolutionary genetic studies. It is commonly thought that large sample sizes are required in order to precisely infer FST and that small sample sizes lead to overestimation of genetic differentiation. Until recently, studies in ecological model organisms incorporated a limited number of genetic markers, but since the emergence of next generation sequencing, the panel size of genetic markers available even in non-reference organisms has rapidly increased. In this study we examine whether a large number of genetic markers can substitute for small sample sizes when estimating FST. We tested the behavior of three different estimators that infer FST and that are commonly used in population genetic studies. By simulating populations, we assessed the effects of sample size and the number of markers on the various estimates of genetic differentiation. Furthermore, we tested the effect of ascertainment bias on these estimates. We show that the population sample size can be significantly reduced (as small as n = 4–6) when using an appropriate estimator and a large number of bi-allelic genetic markers (k.1,000). Therefore, conservation genetic studies can now obtain almost the same statistical power as studies performed on model organisms using markers developed with next-generation sequencing

    Monetizing Gas: Focusing on Developments in Gas Hydrate as a Mode of Transportation

    Get PDF
    Natural gas and energy resource management is a major challenge in the rapidly changing global and business environment. Increase in gas recoveries and gas production have led a major review in the ways of transporting natural gas energy. Monetizing gas has now become a high priority issue for many countries. Natural gas is a much cleaner fuel than oil and coal especially for electricity generation.Interest in gas hydrate being used as a means of transporting natural gas has increased over the last decade. New technology development has been focusing on using gas hydrates as a way of converting gas to solids to transport to markets around the world. Gas hydrate may be a viable means of storing and transporting gas but more focus should be given to some critical considerations for this gas hydrate development.This paper would discuss some of these issues as we move towards monetizing gas in the form of hydrate. These include energy balance in hydrate formation and re-gasification, storage of the hydrate, form of transporting the hydrate and distances to be transported. Other important factors are re-gasification technologies, economics compared to other gas transportation modes, environmental, climate and other issues

    The dynamical structure of the MEO region: long-term stability, chaos, and transport

    Full text link
    It has long been suspected that the Global Navigation Satellite Systems exist in a background of complex resonances and chaotic motion; yet, the precise dynamical character of these phenomena remains elusive. Recent studies have shown that the occurrence and nature of the resonances driving these dynamics depend chiefly on the frequencies of nodal and apsidal precession and the rate of regression of the Moon's nodes. Woven throughout the inclination and eccentricity phase space is an exceedingly complicated web-like structure of lunisolar secular resonances, which become particularly dense near the inclinations of the navigation satellite orbits. A clear picture of the physical significance of these resonances is of considerable practical interest for the design of disposal strategies for the four constellations. Here we present analytical and semi-analytical models that accurately reflect the true nature of the resonant interactions, and trace the topological organization of the manifolds on which the chaotic motions take place. We present an atlas of FLI stability maps, showing the extent of the chaotic regions of the phase space, computed through a hierarchy of more realistic, and more complicated, models, and compare the chaotic zones in these charts with the analytical estimation of the width of the chaotic layers from the heuristic Chirikov resonance-overlap criterion. As the semi-major axis of the satellite is receding, we observe a transition from stable Nekhoroshev-like structures at three Earth radii, where regular orbits dominate, to a Chirikov regime where resonances overlap at five Earth radii. From a numerical estimation of the Lyapunov times, we find that many of the inclined, nearly circular orbits of the navigation satellites are strongly chaotic and that their dynamics are unpredictable on decadal timescales.Comment: Submitted to Celestial Mechanics and Dynamical Astronomy. Comments are greatly appreciated. 28 pages, 15 figure

    Repair for high-voltage electric motors energy efficiency vs resource use?

    Get PDF
    Electric motors in the industry represent 69% of the industrial electricity consumption in Europe. Even if few in number, high voltage (HV) motors represent a significant share of this consumption due to their more intensive use and high output power. Two main HV motor technologies exist: induction motors (IM) and synchronous motors (SM), of which the latter are more energy efficient. Improving energy efficiency as well as use extension by maintenance, repair or remanufacturing have been identified as relevant circular economy strategies for improving the environmental performance of such active and durable products. However, the assessments performed focus on small- and medium-size electronic products, leaving out bigger products that are more durable and more energy consuming such as HV motors. Those motors are often used until failure, which frequently occurs in stator windings, and which could be repaired by rewinding at the expense of a slight decrease in efficiency. However, other use extension strategies such as reuse and remanufacturing are hindered by the customization of HV motors to their specific use. Finding an appropriate set-up for a second use is difficult for such motors and it is therefore performed seldom. The aim of this study is to compare the life-cycle environmental impact of lifetime extension by repair for the two motor technologies in comparison to their replacement

    Hydrate Formation: Considering the effects of Pressure, Temperature, Composition and Water

    Get PDF
    The main components in producing natural gas hydrate (whether for gas storage or for transportation), are water and natural gas, at low temperatures and high pressures. Each variable has a significant effect on the formation of gas hydrate. It is therefore critical to analyze the effect of each variable on hydrate formation to ascertain the best conditions required for a successful gas hydrate formation process.This research evaluates the effect of these critical elements: temperature, pressure, gas composition, and water upon gas hydrate formation. This paper summarizes the findings of a sensitivity analysis using varying natural gas compositions. Results show that the composition of the natural gas can affect the temperature and pressure required for formation of the hydrate. Even more significant is the effect of impurities in the natural gas on the pressure temperature (PT) curves of the hydrate. Carbon dioxide, hydrogen sulfide and nitrogen are the main impurities in natural gas affecting the hydrate formation. At a particular temperature, nitrogen increases the required hydrate formation pressure while both carbon dioxide and hydrogen sulfide lower the required hydrate formation pressure.The quantity of water required for hydrate formation is an important variable in the process. The water to gas ratio vary depending on the composition of the natural gas and the pressure. Generally the mole ratio of water to natural gas is about 6:1; however, to achieve maximum hydrate formation an incremental increase in water or pressure may be required. This is an interesting trade-off between additional water and additional pressure in obtaining maximum volume of hydrate and is shown in this analysis.Key words: Hydrate formation; Temperature; Pressure; Gas composition; Wate

    Is repair of energy using products environmentally beneficial? The case of high voltage electric motors

    Get PDF
    Repair is advocated as a circular strategy to improve the environmental performance of products. Whether this holds for very long-lived and energy intensive products has not been addressed. This study compares environmental impacts of two high voltage motors of different energy efficiency and assesses their use extension by repair with life cycle assessment (LCA). Due to high energy use, long lifetime and intensive use, the use phase dominates all environmental impacts, even resource depletion. Therefore, a higher energy efficiency is more beneficial than extending the use by repair, and if the energy efficiency is slightly reduced, the repair is not beneficial. Therefore, product requirements and users and manufacturers of such products should ensure designs with high energy efficiency rather than making the product repairable. Finally, the results highlight the importance of including resource use from electricity production and transmission in LCA of the use extension of energy using products
    • …
    corecore