201 research outputs found

    Energy efficient chain based routing protocol for deterministic node deployment in wireless sensor networks

    Get PDF
    Wireless Sensor Network (WSN) consists of small sensor devices, which are connected wirelessly for sensing and delivering specific data to Base Station (BS). Routing protocols in WSN becomes an active area for both researchers and industrial, due to its responsibility for delivering data, extending network lifetime, reducing the delay and saving the node’s energy. According to hierarchical approach, chain base routing protocol is a promising type that can prolong the network lifetime and decrease the energy consumption. However, it is still suffering from long/single chain impacts such as delay, data redundancy, distance between the neighbors, chain head (CH) energy consumption and bottleneck. This research proposes a Deterministic Chain-Based Routing Protocol (DCBRP) for uniform nodes deployment, which consists of Backbone Construction Mechanism (BCM), Chain Heads Selection mechanism (CHS) and Next Hop Connection mechanism (NHC). BCM is responsible for chain construction by using multi chain concept, so it will divide the network to specific number of clusters depending on the number of columns. While, CHS is answerable on the number of chain heads and CH nodes selection based on their ability for data delivery. On the other hand, NHC is responsible for next hop connection in each row based on the energy and distance between the nodes to eliminate the weak nodes to be in the main chain. Network Simulator 3 (ns-3) is used to simulate DCBRP and it is evaluated with the closest routing protocols in the deterministic deployment in WSN, which are Chain-Cluster Mixed protocol (CCM) and Two Stage Chain based Protocol (TSCP). The results show that DCBRP outperforms CCM and TSCP in terms of end to end delay, CH energy consumption, overall energy consumption, network lifetime and energy*delay metrics. DCBRP or one of its mechanisms helps WSN applications by extending the sensor nodes lifetime and saving the energy for sensing purposes as long as possible

    Evaluation of the Effectiveness of ACK Filtering and ACK Congestion Control in Mitigating the Effects of Bandwidth Asymmetry

    Get PDF
    The user demand for high speed and ubiquitous connectivity has led to the development and deployment of many new technologies, such as DSL and satellite-based networks, for accessing the Internet network. The goal of these technologies is to mitigate the bottleneck. Other technologies, such as wireless and packet radio networks aimed at providing the user with unrestricted access to their mobile devices and the Internet. Given that these networks are increasingly being deployed as high-speed access networks, it is highly desirable to achieve good network performance over such networks. These technologies show different characteristics (asymmetry) in uplink and downlink directions. Network asymmetry (uneven bandwidth) can negatively affect the performance of feedback-based transport protocol such as Transmission Control Protocol (TCP). This is because that congestion in any direction can affect the flow of feedback in the other direction. ACK Filtering and ACK Congestion Control techniques are used to diminish the congestion on the upstream link. These techniques suffer from sender burstiness and a slowdown in congestion window growth problems. This project addresses the TCP performance problems caused by network asymmetry and discuss the reasons for the inapplicability between TCP and asymmetric networks. It studies the effectiveness of these techniques in mitigating the effects of bandwidth asymmetry in TCP/IP networks and provides suggestions to overcome the problems associated with these techniques. Based on the performance model presented in this project, achieving optimum TCP performance under different asymmetric conditions is described

    Effect of Pipe Rotation on Casing Pressure Within MPD Applications

    Get PDF
    Well control is one of the most crucial sectors in drilling engineering. Human lives and safety depend on the correct execution of the engineering design. Managed Pressure Drilling (MPD) is a new technology that has recently emerged in the oil and gas industry. It has special well control abilities supported by the RCD to continue drilling or carry operations that involve pipe rotation, while circulating out a gas kick. This thesis examines the effect of pipe rotation on casing pressure profiles within MPD kick circulation application. The analysis was carried on real scale kick experiments. These experiments were carried in a controlled environment that mimicked downhole conditions with a gas influx entering the wellbore. Both water based mud and oil based mud were evaluated. Then, the real scale tests analysis was coupled with the effect of pipe rotation through the application of correlations. The correlations estimate the change in frictional pressure loss in the annuls for non-Newtonian fluids with pipe rotation. A study of the effect of a larger size gas bubble breakage into smaller size bubbles on the maximum anticipated casing pressure is also included in this research. The thesis was divided into three models: (1) dissolved gas model in OBM. (2) single bubble model in WBM. (3) dispersed bubble model in WBM. The first two models studied the effect of frictional pressure changes on the anticipated casing pressure. The dispersed bubble model studies the effect of breaking the gas bubble into many very small bubbles. The practical outcome is to further the precision of the estimation of downhole pressure limits since MPD address narrow fracture-pore pressure window and to find if casing pressure changes would have any effect on the RCD rating selection and if the rotation can be safely conducted

    Small Incidental Renal Masses in Adults : Review of the literature

    Get PDF
    Incidental renal tumours are becoming an important clinical problem that many physicians will need to deal with. A good knowledge of the nature of these tumours and how to manage them is therefore needed. The aim of this paper is to review the literature about incidental renal tumours in adults. Many incidentally discovered small renal tumours (<4 cm) are benign and of low stage, grade and progression potential. The preferred management in young fit patients is open or laparoscopic nephron-sparing surgery. Treatment alternatives include needle-ablative therapies and surveillance in elderly unfit patients. Tumour renal biopsy is encouraged prior to needle-ablative therapy and surveillance. Awareness about incidental renal masses and their management is essential for treating doctors.

    Adaptive Online Transient Stability Assessment of Power Systems for Operational Purposes

    Get PDF
    Online stability assessment is an important problem that has not been solved completely yet. The purpose of this research is to tackle online transient stability assessment. Currently, most utility companies use step-by-step integration in order to set protective equipment so that they effectively work for critical contingencies. However, there are times an unforeseen contingency may occur which may cause the system to transit and the protective equipment to misoperate and does not isolate the disturbed part of the system. This research introduces a method that automatically determines a group of generators that participate in system separation and hence transient instability. The method consists of four phases: modeling and simulation, critical machines identification, online transient stability assessment, and critical clearing time calculation. In the modeling and simulation phase, the power system is built and the generators’ rotor angles and speeds are captured. In the critical machines identification phase, the average instantaneous rotor accelerating powers, coherency measures, the during-fault rotor angles and speeds characteristics, and the pre- and post-fault rotor angles are used to identify the Severely Disturbed Group (SDG) of machines. The results of this phase are used to calculate the kinetic energy of the SDG and potential energy of another (or possibly the same) group of generators. Utilization and success of the proposed method will be documented using results from the IEEE 39-Bus test system. Each step of each phase will be demonstrated as needed. The proposed method is compared to step-by-step integration and two direct methods. The suitability of the proposed method for operation will be shown in cases where the Y-Bus matrix and rotor angles and speeds are given. The proof of concept of the proposed method was used in simulating the test system and encouraging results of the simulation were published in ‎[1] and ‎[2]. The proof of concept is the foundation of the method proposed in this dissertation to determine transient stability of large-scale power systems

    Adaptive Online Transient Stability Assessment of Power Systems for Operational Purposes

    Get PDF
    Online stability assessment is an important problem that has not been solved completely yet. The purpose of this research is to tackle online transient stability assessment. Currently, most utility companies use step-by-step integration in order to set protective equipment so that they effectively work for critical contingencies. However, there are times an unforeseen contingency may occur which may cause the system to transit and the protective equipment to misoperate and does not isolate the disturbed part of the system. This research introduces a method that automatically determines a group of generators that participate in system separation and hence transient instability. The method consists of four phases: modeling and simulation, critical machines identification, online transient stability assessment, and critical clearing time calculation. In the modeling and simulation phase, the power system is built and the generators’ rotor angles and speeds are captured. In the critical machines identification phase, the average instantaneous rotor accelerating powers, coherency measures, the during-fault rotor angles and speeds characteristics, and the pre- and post-fault rotor angles are used to identify the Severely Disturbed Group (SDG) of machines. The results of this phase are used to calculate the kinetic energy of the SDG and potential energy of another (or possibly the same) group of generators. Utilization and success of the proposed method will be documented using results from the IEEE 39-Bus test system. Each step of each phase will be demonstrated as needed. The proposed method is compared to step-by-step integration and two direct methods. The suitability of the proposed method for operation will be shown in cases where the Y-Bus matrix and rotor angles and speeds are given. The proof of concept of the proposed method was used in simulating the test system and encouraging results of the simulation were published in ‎[1] and ‎[2]. The proof of concept is the foundation of the method proposed in this dissertation to determine transient stability of large-scale power systems

    A Practical Method for Power Systems Transient Stability and Security

    Get PDF
    Stability analysis methods may be categorized by two major stability analysis methods: small-signal stability and transient stability analyses. Transient stability methods are further categorized into two major categories: numerical methods based on numerical integration, and direct methods. The purpose of this thesis is to study and investigate transient stability analysis using a combination of step-by-step and direct methods using Equal Area Criterion. The proposed method is extended for transient stability analysis of multi machine power systems. The proposed method calculates the potential and kinetic energies for all machines in a power system and then compares the largest group of kinetic energies to the smallest groups of potential energies. A decision based on the comparison can be made to determine stability of the power system. The proposed method is used to simulate the IEEE 39 Bus system to verify its effectiveness by comparison to the results obtained by pure numerical methods

    Simulation and optimization of tuneable microstrip patch antenna for fifth-generation applications based on graphene

    Get PDF
    Microstrip patch antennas (MPAs) are known largely for their versatility in terms of feasible geometries, making them applicable in many distinct circumstances. In this paper, a graphene-based tuneable single/array rectangular microstrip patch antenna (MPA) utilizing an inset feed technique designed to function in multiple frequency bands are used in a fifth-generation (5G) wireless communications system. The tuneable antenna is used to eliminate the difficulties caused by the narrow bandwidths typically associated with MPAs. The graphene material has a reconfigurable surface conductivity that can be adjusted to function at the required value, thus allowing the required resonance frequency to be selected. The simulated tuneable antenna comprises a copper radiating patch with four graphene strips used for tuning purposes and is designed to cover a wide frequency band. The proposed antenna can be tuned directly by applying a direct current (DC) voltage to the graphene strips, resulting in a variation in the surface impedance of the graphene strips and leading to shifts in the resonance frequency

    Simulation and optimization of a tuneable rectangular microstrip patch antenna based on hybrid metal-graphene and FSS superstrate for fifth-generation applications

    Get PDF
    In this paper, a tuneable rectangular microstrip patch antenna (MPA) is simulated and optimized to operate in four frequency bands of the next generation of wireless communication systems. The proposed design incorporates a copper radiating patch with four implanted graphene strips for tuning purposes. The reconfigurable surface impedance of graphene can easily be altered by applying a DC voltage bias directly to the graphene strips, allowing the operating frequency of the antenna to be tuned as desired. The capability of the applied voltage to tune the operating frequency band of the proposed antenna is studied via computer simulation technology (CST) microwave studio (MWS). Frequency selective surfaces (FSSs) are introduced in order to improve the radiation parameters of the antenna. The operating frequency band of the tuneable rectangular MPA increases directly as the applied DC voltage bias is increased. Based on the simulation results, a tuneable rectangular MPA placed between two FSSs is proposed for fifth-generation applications
    • …
    corecore