183 research outputs found

    Petrology and Trace Element Budgets of High-pressure Peridotites Indicate Subduction Dehydration of Serpentinized Mantle (Cima di Gagnone, Central Alps, Switzerland)

    Get PDF
    At Cima di Gagnone, garnet peridotite and chlorite harzburgite lenses within pelitic schists and gneisses correspond to eclogite-facies breakdown products of hydrated peridotites and are suitable for studying dehydration of serpentinized mantle. Thermobarometry and pseudosection modelling yield peak temperatures of 750-850°C and pressures <3 GPa. The minimum temperature recorded by the garnet peridotite corresponds to the maximum conditions experienced by the chlorite harzburgite, suggesting that these rocks recrystallized cofacially at ∼800°C. Alternatively, they might have decoupled during subduction, as achieved in tectonically active plate interface boundaries. The major and rare earth element (REE) variability of the peridotites was mostly acquired during pre-subduction mantle evolution as a result of partial melting and reactive melt flow. The ultramafic suite is also characterized by fluid-mobile element enrichments (B, Pb, As, Sb, Cs, Li, U, Be), which confirm derivation from variably serpentinized protoliths. Similarity in the U, Pb, B, Li and Sr contents of the Gagnone peridotites to present-day oceanic serpentinites suggests that these elements were partly taken up during initial serpentinization by seawater-derived fluids. Positive Be, As and Sb anomalies suggest involvement of fluids equilibrated with crustal (metasedimentary) reservoirs during subsequent subduction metamorphism and peridotite entrainment in (meta)sediments. Fluid-mobile element enrichment characterizes all peak eclogitic minerals, implying that multiple hydration events and element influx pre-dated the eclogite-facies dehydration. Peak anhydrous minerals retain B, Li, As and Sb concentrations exceeding primitive mantle values and may introduce geochemical anomalies into the Earth's mantle. The relatively low contents of large ion lithophile elements and light REE in the Gagnone peridotites with respect to much higher enrichments shown by metasomatized garnet peridotite pods hosted in migmatites (Ulten Zone, Eastern Alps) suggest that the crustal rocks at Gagnone did not experience partial melting. The Gagnone garnet peridotite, despite showing evidence for chlorite dehydration, retains significant amounts of fluid-mobile elements documenting that no partial melting occurred upon chlorite breakdown. We propose that the Gagnone ultramafic rocks represent a prime example of multi-stage peridotite hydration and subsequent dehydration in a plate interface settin

    Multi-stage reactive formation of troctolites in slow-spreading oceanic lithosphere (Erro-Tobbio, Italy): a combined field and petrochemical study

    Get PDF
    partially_open5Many recent studies have investigated the replacive formation of troctolites from mantle protoliths and the compositional evolution of the percolating melt during melt-rock interaction processes. However, strong structural and geochemical constraints for a replacive origin have not yet been established. The Erro-Tobbio impregnated mantle peridotites are primarily associated with a hectometre-size troctolitic body and crosscutting gabbroic dikes, providing a good field control on melt-rock interaction processes and subsequent magmatic intrusions. The troctolitic body exhibits high inner complexity, with a host troctolite (Troctolite A) crosscut by a second generation of troctolitic metre-size pseudo-tabular bodies (Troctolite B). The host Troctolite A is characterized by two different textural types of olivine, corroded deformed millimetre- to centimetre-size olivine and fine-grained rounded undeformed olivine, both embedded in interstitial to poikilitic plagioclase and clinopyroxene. Troctolite A shows melt-rock reaction microstructures indicative of replacive formation after percolation and impregnation of mantle dunites by a reactive melt. The evolution of the texture and Crystallographic Preferred Orientation (CPO) of olivine are correlated and depend on the melt/rock ratio involved in the impregnation process. A low melt/rock ratio allows the preservation of the protolith structure, whereas a high melt/rock ratio leads to the disaggregation of the pre-existing matrix. The mineral compositions in Troctolite A define reactive trends, indicative of the buffering of the melt composition by assimilation of olivine during impregnation. The magmatic Troctolite B bodies are intruded within the pre-existing Troctolite A and are characterized by extreme textural variations of olivine, from decimetre-size dendritic to fine-grained euhedral crystals embedded in poikilitic plagioclase. This textural variability is the result of olivine assimilation during melt-rock reaction and the correlated increase in the degree of undercooling of the percolating melt. In the late gabbroic intrusions, mineral compositions are consistent with the fractional crystallization of melts modified after the reactive crystallization of Troctolites A and B. The Erro-Tobbio troctolitic body has a multi-stage origin, marked by the transition from reactive to fractional crystallization and diffuse to focused melt percolation and intrusion, related to progressive exhumation. During the formation of the troctolitic body, the melt composition was modified and controlled by assimilation and concomitant crystallization reactions occurring at low melt supply. Similar processes have been described in ultra-slow spreading oceanic settings characterized by scarce magmatic activity.openBasch, Valentin; Rampone, Elisabetta; Crispini, Laura; Ferrando, Carlotta; Ildefonse, Benoit; Godard, MargueriteBasch, Valentin; Rampone, Elisabetta; Crispini, Laura; Ferrando, Carlotta; Ildefonse, Benoit; Godard, Marguerit

    Scientific Drilling and Related Research in the Samail Ophiolite, Sultanate of Oman

    Get PDF
    This workshop report describes plans for scientific drilling in the Samail ophiolite in Oman in the context of past, current, and future research. Long-standing plans to study formation and evolution of the Samail crust and upper mantle, involving igneous and metamorphic processes at an oceanic spreading center, have been augmented by recent interest in ongoing, low temperature processes. These include alteration and weathering, and the associated sub-surface biosphere supported by chemical potential energy due to disequilibrium between mantle peridotite and water near the surface. This interest is motivated in part by the possibility of geological carbon capture and storage via engineered, accelerated mineral carbonation in Oman

    Deep Sourced Fluids for Peridotite Carbonation in the Shallow Mantle Wedge of a Fossil Subduction Zone: Sr and C Isotope Profiles of OmanDP Hole BT1B

    Get PDF
    金沢大学理工研究域地球社会基盤学系Completely carbonated peridotites represent a window to study reactions of carbon-rich fluids with mantle rocks. Here, we present details on the carbonation history of listvenites close to the basal thrust in the Samail ophiolite. We use samples from Oman Drilling Project Hole BT1B, which provides a continuous record of lithologic transitions, as well as outcrop samples from listvenites, metasediments, and metamafics below the basal thrust of the ophiolite. 87Sr/86Sr of listvenites and serpentinites, ranging from 0.7090 to 0.7145, are significantly more radiogenic than mantle values, Cretaceous seawater, and other peridotite hosted carbonates in Oman. The Hawasina sediments that underlie the ophiolite, on the other hand, show higher 87Sr/86Sr values of up to 0.7241. δ13C values of total carbon in the listvenites and serpentinites range from −10.6‰ to 1.92‰. We also identified a small organic carbon component with δ13C as low as −27‰. Based on these results, we propose that during subduction at temperatures above >400°C, carbon-rich fluids derived from decarbonation of the underlying sediments migrated updip and generated the radiogenic 87Sr/86Sr signature and the fractionated δ13C values of the serpentinites and listvenites in core BT1B. © 2021. American Geophysical Union. All Rights Reserved

    Magmatic Products by Ocean Floor Spreading in MAR : Preliminary Analyses of Peridotites from IODP Exp.304/305 at Atlantis Massif, MAR 30°N

    Get PDF
    金沢大学大学院自然科学研究科4the International Symposium of the Kanazawa University 21st-Century COE Program, Promotion Envirnmental Research in Pan-Japan Sea Area -Young Researchers\u27 Network- , DATE:March 8-10,2006, PLACE: Kanazawa Excel Hotel Tokyu, Japan, Sponsors: Japan Sea Research Institute / UNU-IAS(United Nation University Institute of Advanced Studies), Ishikawa Prefectural Government, City of Kanazaw

    Primitive layered gabbros from fast-spreading lower oceanic crust

    Get PDF
    Three-quarters of the oceanic crust formed at fast-spreading ridges is composed of plutonic rocks whose mineral assemblages, textures and compositions record the history of melt transport and crystallization between the mantle and the sea floor. Despite the importance of these rocks, sampling them in situ is extremely challenging owing to the overlying dykes and lavas. This means that models for understanding the formation of the lower crust are based largely on geophysical studies and ancient analogues (ophiolites) that did not form at typical mid-ocean ridges. Here we describe cored intervals of primitive, modally layered gabbroic rocks from the lower plutonic crust formed at a fast-spreading ridge, sampled by the Integrated Ocean Drilling Program at the Hess Deep rift. Centimetre-scale, modally layered rocks, some of which have a strong layering-parallel foliation, confirm a long-held belief that such rocks are a key constituent of the lower oceanic crust formed at fast-spreading ridges. Geochemical analysis of these primitive lower plutonic rocks-in combination with previous geochemical data for shallow-level plutonic rocks, sheeted dykes and lavas-provides the most completely constrained estimate of the bulk composition of fast-spreading oceanic crust so far. Simple crystallization models using this bulk crustal composition as the parental melt accurately predict the bulk composition of both the lavas and the plutonic rocks. However, the recovered plutonic rocks show early crystallization of orthopyroxene, which is not predicted by current models of melt extraction from the mantle and mid-ocean-ridge basalt differentiation. The simplest explanation of this observation is that compositionally diverse melts are extracted from the mantle and partly crystallize before mixing to produce the more homogeneous magmas that erupt

    La femme dans les mass media

    No full text
    Cordier Marguerite, Godard Hervé. La femme dans les mass media. In: Diplômées, n°96, 1975. pp. 189-195
    corecore