21 research outputs found

    UV Filters with Antagonistic Action at Androgen Receptors in the MDA-kb2 Cell Transcriptional-Activation Assay

    Get PDF
    The fact that certain ultraviolet (UV) filters used in cosmetics display estrogenic activity prompted us to study potential actions on androgen receptors (AR) in the human breast carcinoma cell line MDA-kb2, which expresses functional endogenous AR and glucocorticoid receptors (GR) and is stably transfected with a luciferase reporter plasmid. Dihydrotestosterone (DHT), methyltrienolone (R1881), methyltestosterone, danazol, and androstenedione increased luciferase activity, with EC50 values between 0.11 nM (R1881), 0.14 nM (DHT), and 73.5 nM (androstenedione). DHT-induced luciferase gene expression was inhibited by nonsteroidal antiandrogens, hydroxyflutamide, flutamide, bicalutamide, and vinclozolin. In contrast, the steroidal AR agonist/antagonist cyproterone actetate showed agonistic activity in the absence and presence of DHT, which was not blocked by hydroxyflutamide and thus seems not to be mediated by AR. GR-mediated activation of luciferase by dexamethasone was 100 times less potent than DHT and was not antagonized by hydroxyflutamide. The cell line was used for screening of UV filters, benzophenone-3 (Bp-3), benzophenone-4, 3-benzylidene camphor, 4-methylbenzylidene camphor, butyl-methoxy-dibenzoylmethane, homosalate (HMS), octyl-dimethyl-PABA, and octyl-methoxycinnamate. Two of these, Bp-3 and HMS, antagonized DHT-induced AR activation below cytotoxic concentrations, with IC50 of 5.57 10−6 M (HMS) and 4.98 10−6 M (Bp-3). None of the eight UV filters displayed agonistic activity when tested alone, but high concentrations of Bp-3 induced an increase of luciferase activity in the presence of dexamethasone, which was not blocked by hydroxyflutamide or the estrogen antagonist, ICI 182,780. These data indicate that the UV filters Bp-3 and HMS possess antiandrogenic activity in vitro in addition to estrogenic activit

    Low Dose of BPA Induces Liver Injury through Oxidative Stress, Inflammation and Apoptosis in Long–Evans Lactating Rats and Its Perinatal Effect on Female PND6 Offspring

    Get PDF
    Bisphenol A (BPA) is a phenolic compound used in plastics elaboration for food protection or packaging. BPA-monomers can be released into the food chain, resulting in continuous and ubiquitous low-dose human exposure. This exposure during prenatal development is especially critical and could lead to alterations in ontogeny of tissues increasing the risk of developing diseases in adulthood. The aim was to evaluate whether BPA administration (0.036 mg/kg b.w./day and 3.42 mg/kg b.w./day) to pregnant rats could induce liver injury by generating oxidative stress, inflammation and apoptosis, and whether these effects may be observed in female postnatal day-6 (PND6) offspring. Antioxidant enzymes (CAT, SOD, GR, GPx and GST), glutathione system (GSH/GSSG) and lipid-DNA damage markers (MDA, LPO, NO, 8-OHdG) were measured using colorimetric methods. Inducers of oxidative stress (HO-1d, iNOS, eNOS), inflammation (IL-1β) and apoptosis (AIF, BAX, Bcl-2 and BCL-XL) were measured by qRT-PCR and Western blotting in liver of lactating dams and offspring. Hepatic serum markers and histology were performed. Low dose of BPA caused liver injury in lactating dams and had a perinatal effect in female PND6 offspring by increasing oxidative stress levels, triggering an inflammatory response and apoptosis pathways in the organ responsible for detoxification of this endocrine disruptor.Depto. de FisiologíaSección Deptal. de Bioquímica y Biología Molecular (Medicina)Fac. de MedicinaTRUEUnión Europea. Horizonte 2020Universidad Complutense de Madrid and Banco de Santanderpu

    Endocrine Active UV Filters: Developmental Toxicity and Exposure Through Breast Milk

    Get PDF
    Several UV filters exhibit endocrine activity. Evidence for transdermal passage and presence in the food chain (fish) suggests potential exposure of humans during development. Developmental toxicity was studied in rats for the estrogenic UV filters 4-methylbenzylidene camphor (4-MBC, 0.7, 7, 24, 47 mg/kg/day) and 3-benzylidene camphor (3-BC, 0.07, 0.24, 0.7, 2.4, 7 mg/kg/day) administered in chow to the parent generation before mating, during pregnancy and lactation, and to the offspring until adulthood. Neonates exhibited enhanced prostate growth after 4-MBC and altered uterine gene expression after both filters. 4-MBC and 3-BC delayed male puberty and affected reproductive organ weights of adult offspring. Interactions with the thyroid were noted. Expression and estrogen sensitivity of target genes and nuclear receptor coregulators were altered at mRNA and protein levels in adult uterus, prostate and brain. Female sexual behavior was affected by 4-MBC and 3-BC, estrous cycles by 3-BC. Classical endpoints exhibited LOAELs/NOAELs of 7/0.7 mg/kg/day for 4-MBC and 0.24/0.07 mg/kg/day for 3-BC. Molecular endpoints were affected by the lowest doses. In order to obtain information on human exposure, we conducted a monitoring study on human milk with three series of mother–child pairs (2004, 2005, 2006), with focus on cosmetic UV filters in relation to other endocrine disrupters. Methods for UV filter analysis followed the principles of European standardized methods for pesticide residue analysis (EN 15289). In cohorts 2004 and 2005, 78.8% of women reported use of product(s) containing cosmetic UV filters in a questionnaire, and 76.5% of milk samples contained these filters. Use of UV filters and concentration in human milk were significantly correlated. The results agree with the idea of transdermal passage of UV filters. They also indicate that it may be possible to reduce human exposure during critical periods such as pregnancy and lactation by transiently abstaining from use

    Interlaboratory comparison of four in vitro assays for assessing androgenic and antiandrogenic activity of environmental chemicals.

    Get PDF
    We evaluated and compared four in vitro assays to detect androgen agonists and antagonists in an international interlaboratory study. Laboratory 1 used a cell proliferation assay (assay 1) with human mammary carcinoma cells stably transfected with human androgen receptor. The other laboratories used reporter gene assays, two based on stably transfected human prostate carcinoma cells (assay 2) or human mammary carcinoma cells (assay 4), and the third based on transient transfection of Chinese hamster ovary cells (assay 3). Four laboratories received four coded compounds and two controls: two steroidal androgens, two antiandrogens, an androgenic control, 5alpha-dihydrotestosterone (DHT), and an antiandrogenic control, bicalutamide (ICI 176,334). All laboratories correctly detected the androgenic activity of 4-androsten-3,17-dione and 17alpha-methyltestosterone. For both compounds, the calculated androgenic potencies relative to the positive control (RAPs) remained within one order of magnitude. However, laboratory 3 calculated a 50-fold higher RAP for 4-androsten-3,17-dione. All assays detected and quantified the antiandrogenic effect of vinclozolin [median inhibitory concentration (IC50) values ranging from 1.1 times symbol 10(-7) M to 4.7 times symbol 10(-7) M]. In assays 2 and 3, vinclozolin showed partial androgenic activity at the highest concentrations tested. For vinclozolin, calculated antiandrogenic potencies relative to bicalutamide (RAAPs) differed no more than a factor of 10, and IC50 values matched those of bicalutamide. Similarly, we found antiandrogenic activity for tris-(4-chlorophenyl)methanol. RAAP values were between 0.086 and 0.37. Three assays showed cytotoxicity for this compound at or above 1 times symbol 10(-5) M. In summary, all assays proved sensitive screening tools to detect and quantify androgen receptor-mediated androgenic and antiandrogenic effects of these chemicals accurately, with coefficients of variation between 8 and 90%
    corecore