1,169 research outputs found

    Robust interrogation of differential properties for design and manufacture

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Ocean Engineering, 1994, and Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 1994.Includes bibliographical references (leaves 120-123).by George D. Margetis.M.S

    Pair excitations and the mean field approximation of interacting Bosons, I

    Full text link
    In our previous work \cite{GMM1},\cite{GMM2} we introduced a correction to the mean field approximation of interacting Bosons. This correction describes the evolution of pairs of particles that leave the condensate and subsequently evolve on a background formed by the condensate. In \cite{GMM2} we carried out the analysis assuming that the interactions are independent of the number of particles NN. Here we consider the case of stronger interactions. We offer a new transparent derivation for the evolution of pair excitations. Indeed, we obtain a pair of linear equations describing their evolution. Furthermore, we obtain apriory estimates independent of the number of particles and use these to compare the exact with the approximate dynamics

    Metal-semiconductor-metal photodetectors on a GeSn-on-insulator platform for 2 µm applications

    Get PDF
    In this work, the metal-semiconductor-metal photodetectors were demonstrated on the Ge0.91Sn0.09-on-insulator (GeSnOI) platform. The responsivity was 0.24 and 0.06 A/W at wavelengths of 1,600 and 2,003 nm, respectively. Through a systematic study, it is revealed that the photodetectors can potentially detect wavelength beyond 2,200 nm. The dark current density was measured to be 4.6 A/cm2 for GeSnOI waveguide-shaped photodetectors. The 3 dB bandwidth was observed to be 1.26 and 0.81 GHz at 1,550 and 2,000 nm wavelengths, respectively. This work opens up an opportunity for low-cost 2 µm wavelength photodetection on the GeSn/Ge interface-free GeSnOI platform

    Neutral magic-angle bilayer graphene: Condon instability and chiral resonances

    Full text link
    We discuss the full optical response of twisted bilayer graphene at the neutrality point close to the magic angle within the continuum model. (i) First, we define the full optical response consistent with the underlying D3D_3 symmetry, yielding the total, magnetic, and chiral response that transform according to the irreducible representations A1A_1, A2A_2, and EE, respectively. Then, we numerically calculate the dissipative and reactive response for twist angles around the magic angle θm\theta_m and comment on the possibility of a Condon instability. (ii) Second, we numerically calculate the full optical response {\it almost at} θm\theta_m. The total response is characterized by three universal plateaus which can be obtained from an analytical calculation. The magnetic and the chiral response, however, is given by corresponding non-universal plateaus depending on the twist angle θ\theta via the dimensionless parameter αθmθ\alpha\sim\theta_m-\theta. (iii) Following the discussion on the large magnetic response, we calculate the plasmonic excitations at the neutrality point inside the optical gap of relaxed twisted bilayer graphene. We find that acoustic plasmons extend over almost the whole optical gap and carry the largest oscillator strength. (iv) Finally, we discuss symmetry relations for the response functions as function of the chemical potential and highlight the consequences of the approximate particle-hole symmetry of the continuum model for twisted bilayer graphene. We then discuss a detailed balance relation where the chiral response at charge neutrality can be understood in terms of electron (hole) transitions for which the initial (final) states are energetically closer to charge neutrality than the final (initial) states.Comment: 17 pages, 7 figure

    Hydrodynamical analysis of single inclusive spectra and Bose-Einstein correlations for Pb+PbPb+Pb at 160 AGeV

    Get PDF
    We present the first analysis of preliminary data for Pb+PbPb+Pb at 160 AGeVAGeV using 3+1-dimensional relativistic hydrodynamics. We find excellent agreement with the rapidity spectra of negative hadrons and the correlation measurements. The data indicates a large amount of stopping; 65%65\% of the invariant energy of the collision is thermalized and 73%73\% of the baryons are contained in the central fireball. Within our model this implies that a quark-gluon-plasma of lifetime 3.4 fm/cfm/c was formed.Comment: 13 pages, 5 Postscript figures (attached to this file as compressed and uuencoded Postscript file

    Impurity and quaternions in nonrelativistic scattering from a quantum memory

    Full text link
    Models of quantum computing rely on transformations of the states of a quantum memory. We study mathematical aspects of a model proposed by Wu in which the memory state is changed via the scattering of incoming particles. This operation causes the memory content to deviate from a pure state, i.e. induces impurity. For nonrelativistic particles scattered from a two-state memory and sufficiently general interaction potentials in 1+1 dimensions, we express impurity in terms of quaternionic commutators. In this context, pure memory states correspond to null hyperbolic quaternions. In the case with point interactions, the scattering process amounts to appropriate rotations of quaternions in the frequency domain. Our work complements a previous analysis by Margetis and Myers (2006 J. Phys. A 39 11567--11581).Comment: 16 pages, no figure

    Second-order corrections to mean-field evolution of weakly interacting Bosons, II

    Get PDF
    We study the evolution of a N-body weakly interacting system of Bosons. Our work forms an extension of our previous paper I, in which we derived a second-order correction to a mean-field evolution law for coherent states in the presence of small interaction potential. Here, we remove the assumption of smallness of the interaction potential and prove global existence of solutions to the equation for the second-order correction. This implies an improved Fock-space estimate for our approximation of the N-body state

    Clocking hadronization in relativistic heavy ion collisions with balance functions

    Get PDF
    A novel state of matter has been hypothesized to exist during the early stage of relativistic heavy ion collisions, with normal hadrons not appearing until several fm/c after the start of the reaction. To test this hypothesis, correlations between charges and their associated anticharges are evaluated with the use of balance functions. It is shown that late-stage hadronization is characterized by tightly correlated charge/anticharge pairs when measured as a function of relative rapidity.Comment: 5 pages, 3 figure
    corecore