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Abstract

The areas of Computer Aided Design (CAD) and Computer Aided Manufacturing (CAM)
have experienced enormous advances in recent years. Nevertheless, the linkage between
them is still weak. Robustness and accuracy are still the major problems of the area, partic-
ularly when dealing with complex sculptured or free-form objects, such as marine propellers.
Robust interrogation of surfaces could be a major contribution to the automation of the
manufacturing and machining processes. This thesis addresses the development of robust
and accurate tools for the interrogation of complex surfaces described mathematically by
B-splines. B-spline curves and surfaces are represented by piecewise polynomial equations.
This allows for the formation of nonlinear polynomial equations that govern shape inter-
rogation, ie. the extraction of important differential and global geometric properties. In
this thesis we develop a continuous decomposition of non-uniform B-spline surface patches
into a set of trimmed patches each with a specified range of curvature (Gaussian, mean,
maximum principal, minimum principal and root mean square curvature). The original
B-spline surface is subdivided into several Bezier patches. The formulation and solution of
the nonlinear polynomial equations is performed on each separate Bezier patch, in order to
achieve computational efficiency. Solutions to those nonlinear systems are the stationary
points of each curvature function, and the surface umbilics. In order to render the method-
ology numerically robust, rounded interval arithmetic was implemented. Unlike double
precision floating point arithmetic that suffers because of the existence of numerical error,
rounded interval arithmetic guarantees that no solution of a system of nonlinear polynomial
equations is missed. In addition, the solver for nonlinear polynomial systems is based in
global Bernstein subdivision methods, which unlike local methods, do not require a first
approximation for the root. The nature of the problem renders parallel processing very
attractive, since the original problem is subdivided into several smaller subproblems. The
implementation of parallel processing was made possible through Parallel Virtual Machine
(PVM), a software system that enables a collection of heterogeneous computers to be used
as a coherent and flexible concurrent computational resource. The introduction of parallel
processing to the methodology, allows for faster continuous decomposition of complex B-
splines surfaces. Detailed results for the parallel processing speed-up are included.

Thesis Supervisor: Nicholas M. Patrikalakis, Associate Professor of Ocean Engineering

Thesis Reader: David C. Gossard, Professor of Mechanical Engineering
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Chapter 1

Introduction

1.1 Objective and Motivation

Although, in recent years the advances made in the area in Computer Aided Design (CAD)

and Computer Aided Manufacturing (CAM) are enormous, these advances are mostly in-

tended to support rather than replace human labor. In addition, CAD and CAM have been

developed independently with little attention focused to the automated linkage between

them, [18].

In the area of CAD, many objects are represented by means of free-form surfaces, also

known as sculptured surfaces, represented by parametric equations. The parametric rep-

resentation of the surfaces provides an efficient way to generate data points explicitly and

avoids axis dependence. Free-form surfaces arise in the bodies of ships, aircrafts and au-

tomobiles and in general in every major industrial part. Since the shape of parts such as

propeller or turbine blades, significantly affects their performance, major attention needs

to be given to such forms during the design process.

The interrogation of free-form surfaces plays an important role in the analysis, design

and manufacturing processes. We refer to interrogation as the extraction of important

differential and global geometric properties that the free-form surface might exhibit. Such

properties and their importance will be discussed in Chapter 2.
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One of the obstacles, that prevents the implementation of a fully automated way to

manufacture free-form surfaces, is the lack of robustness in the interrogation tools. Robust-

ness is one of the key elements in achieving linkage between CAD and CAM. If robustness

is not guaranteed, the need to manually or visually verify the results, leads to suboptimal

procedures, commonly appearing in the form of large safety factors, [18].

The objective of this thesis is to develop a methodology that will robustly interrogate

complex free-form objects in order to support automation of design and manufacturing. We

give special attention to the robustness of this methodology, requiring that all the differential

and global geometric properties of the free-form object are extracted automatically without

failure.

One of the most important properties of a free-form object is the curvature of its surfaces

at any given point. Definitions and details on the different kinds of curvatures are presented

in Chapter 3.

In this thesis we limit our investigation of the differential properties to the examination

of the curvature. The main information obtained from the curvature functions are the

stationary points (local and global maxima, minima and saddle points of the curvature) as

well as contour plots. This information is of vital interest during the machining process.

Indeed, numerically controlled (NC) machining is used extensively in the industry today.

The user must then know the exact range of curvature to select the optimal combination of

tool path and cutter size for NC machining.

In addition, in this thesis we examine the capabilities of parallel programming for a

more efficient evaluation of complex surfaces.

1.2 Literature Review

Extensive work on this subject, was done by Maekawa in his PhD Thesis [18]. Maekawa

developed a. robust interrogation tool that creates contour plots of the different kinds of

curvature, of free-form surfaces described by a single Bezier patch. In his thesis, he distin-
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guishes between interrogation algorithms based on local and discrete methods where the

computation involves numerical uncertainty, and global and continuous methods where the

computation involves numerical uncertainty.

More specifically, since curves and surfaces are usually represented by parametric piece-

wise polynomial equations, the governing equations for interrogation reduce to systems

of nonlinear polynomial equations, frequently involving also square roots of polynomial

equations. These systems of equations have been solved in the past using local numerical

techniques such as Newton type methods that require good initial approximation to all

roots and hence cannot provide full assurance that all roots will be found. On the other

hand, global techniques described in [13], [18], [19] and [20] find all roots without requiring

initial approximation.

Discrete color coded maps are used in existing commercial systems to estimate the range

of principal curvatures but are not sufficient to provide detailed machining information, nor

permit automation of the machining process or of fairing algorithms. Continuous decompo-

sition of surfaces on the basis of curvature provides the exact range of curvatures and is able

to supply detailed machining information. The degrees of some of the governing equations

for interrogation are relatively high. In addition, if floating point arithmetic is employed

for the computation, there exists substantial numerical uncertainty in the formulation and

solution process. If however, the computation is conducted with interval arithmetic, one

can obtain the results with numerical certainty.

The computational time required to robustly obtain color maps of curvature can be

substantial, especially if the computation is conducted with intervals. For that reason, the

methodology developed by Maekawa [18] was limited to simple surfaces described mathe-

matically by a single Bezier patch. More complex surfaces, usually described by B-splines,

were not handled. In Chapter 2 we present a brief overview of the free-form representation

using Bezier patches and B-splines as well as the relationship between them. It is this

relationship that allows us to decompose a B-spline patch, into several Bezier patches and

apply separately, over each patch, a methodology similar to that of Maekawa's, [18], [20].
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Subsequently, the patches are assembled to obtain the final result on the entire surface. It

is noteworthy that the nature of the decomposition makes parallel programming appealing.

The implementation of the parallel programming was made possible through Parallel

Virtual Machine (PVM), a software system that enables a collection of heterogeneous com-

puters to be used as a coherent and flexible concurrent computational resource. More details

about parallel programming and PVM will be discussed later, in Chapter 4.

1.3 Thesis Organization

This thesis is organized as follows.

Chapter 2 provides a brief review of the basic properties of Bezier and B-spline curves

and surfaces, as well as the algorithms used for their transformation. A description of the

methodology used to solve systems of nonlinear polynomial equations is included as well as

an overview of the interval arithmetic procedures.

Chapter 3 presents the mathematical model used to produce the contour maps. It

includes an introduction to the differential geometry of surfaces, mathematical methods of

finding the critical points of the curvature on a free-form surface as well as the algorithm

used for contouring.

Chapter 4 introduces the parallel processing procedure used in the computational as-

pect of this thesis. It describes the way "Parallel Virtual Machine" works and how it is

implemented in our case.

Chapter 5 describes implementation issues for obtaining the contour maps of the cur-

vatures on B-splines patches. It includes the particular algorithms and data structures

used.

Chapter 6 presents selected examples created with the methodology described earlier.

Several color coded curvature contour maps are included. Also, information on the perfor-

mance of parallel programming and its impact on lowering the computational time.

Chapter 6 also summarizes the contribution of this thesis and draws conclusions. Di-
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rections for further research are also suggested.



Chapter 2

Theoretical Background

In this chapter, some topics necessary for further understanding of the thesis are presented.

These topics have been developed by many other researchers and are widely available in

the literature. Herein, the relevant references are given separately for each subject.

2.1 Review of Shape Representation Using Bezier and B-

Spline Surfaces

A number of books and articles related to the area of Computer Aided Design include the

theoretical background for the mathematical representation of free-form curves and surfaces

using B6zier and B-spline representation. A small portion of the literature includes [8], [9],

[1] and [33]. A very brief review is included here.

2.1.1 Bezier Curves and Surfaces

B6zier curves can be defined in two ways: via a recursive algorithm, which was developed by

de Casteljau, or via an explicit representation using Bernstein polynomials. We will express
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Bezier curves in terms of Bernstein polynomials defined by the following formula [8]:

Bi,, (t) = tZ(1 - t)n- i = 0,1,..., n (2.1)

One of the important properties of the Bernstein polynomials is that they satisfy the fol-

lowing recursion,

Bi,n(t) = (1 - t)Bi,-l 1(t) + tBi-l,n-1(t) (2.2)

where,

Bo,o(t) 1 and Bj,,(t) 0 for j ' {0,..., n} (2.3)

Another important property is that Bernstein polynomials form a partition of unity:

Zy Bj,,(t) - 1 (2.4)
j=0

The equation describing the Bezier curve is given by,

R(t) = Z bjBi,n(t) (2.5)
j=0

where bo,bl,...,bn E IZ3 and t E [0, 1]. The degree of the Bezier curve is n, and bj are

the control points.

The above could be extended to the formulation of the B6zier surfaces. We can consider

a surface to be the locus of a curve that is continuously moving through space, and thereby

changing its shape. In order to formulate the mathematical description of a Bezier surface,

we first assume that the moving curve is a B6zier curve. At any time, the moving curve is

then determined by a set of control points, which in turn, move through space on a curve.

A second assumption is that this next curve is also a B6zier curve and that the curves on

which the control points move are of the same degree. The formal definition of a Bezier
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patch is thus,
m n

r(u, v) = i PijBi,m(u)Bj,n(v) (2.6)
i=0 j=O

where m, n are the degrees of the surface in the u, v parametric directions, and Pij are the

control points, 0 < u, v < 1 and Bi,m(u), Bj,n(v) are the Bernstein basis functions.

2.1.2 B-Spline Curves and Surfaces

Although the Bezier representation for curves and surfaces, provides a powerful tool in

design, it has some limitations. For instance, complicated shapes require high degree B6zier

curves and surfaces, whereas for efficiency and accuracy, the degree should not exceed

10. Such complex curves and surfaces are modeled using piecewise polynomial curves and

surfaces, known as B-splines. We define the B-spline curve and surface by using the B-spline

basis.

The B-Spline Basis: The B-spline basis is defined recursively. The following recursion

formula relates B-splines of degree n to B-splines of degree n-l:

NT(u) = U- uI-1 Nln-'(u) + Ul+n - U N -( )  (2.7)
Ul+n-1 - U1-1 Ul+n - UI

where

N(u) = 1 if ui < Ui+l

0 else

and ui are the components of the knot vector. The knot vector is a non-decreasing sequence,

in which the range of parameter is defined. Given integers n, L , the knot vector is defined

as follows, [8]:

U, . . ., UL+2n-2

n will be the order of the B-spline, L will be the number of the polynomial segments of the

B-spline curve and ui the knots. Not all of the ui have to be distinct. If ui = ui+l = ... =

ui+r-l, i.e., r successive knots coincide, we say that ui has multiplicity r. If a knot does
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not coincide with any other knot, we say that it is simple.

o, ... , Un-2, Un-1, . , UL+n-1 , L+n, ... UL+2n-2 (2.8)
n-1 knots domain of parameter n-1 knots

The domain of B-spline curve is the range of parameter u E [un-1, ... , uL+n-1]. Although

the knots could be any nondecreasing sequence, they usually go from zero to one by con-

vention.

By using the basis functions, the B-spline curve can be defined as follows:

Given n, L, and Po,..., Pn+L-1 E 7Z3

L+n-1

R(u) = 1 PiNin(u) (2.9)
i=O

Practically, it is desirable to have u0o and UL+n-1 both of full multiplicity n. This condition

places the first and last control points Po and PL+n-1 on the endpoints of the curve. If the

end knots are allowed to be of lower multiplicity, then the first and last control points do

not lie on the curve. The name "B-spline" is derived from the Basis spline functions.

In a similar way with the Bezier surface, the B-spline surface is defined as,

m n

R(u, v) = E Pi,jNj(u)N7(v) (2.10)
i=0 j=0

2.2 Interval Arithmetic

2.2.1 Definition

An interval is a set of real numbers defined below [23]:

[a,b] = {xla < x < b} (2.11)

Two intervals [a, b] and [c, d] are said to be equal if a = c and b = d. The intersection of

two intervals is empty or [a, b] n [c, d] = 0, if either a > d or c > b. Otherwise, [a, b] n
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[c, d] = [max(a, c), min(b, d)]. The union of the two intersecting intervals is [a, b] U [c, d] =

[min(a, c), max(b, d)]. An order of intervals is defined by [a, b] < [c, d] if and only if b < c.

The width of an interval [a, b] is b - a and the absolute value is 1[a, b]l = max(laI, Ibl).

2.2.2 Interval Arithmetic and its Algebraic Properties

The interval arithmetic operations are defined by [23]

[a, b] o [c, d] = {x o y I x E [a, b] and y E [c, d]}. (2.12)

where o represents an arithmetic operation o E {+, -, -, /}. Using the end points of the two

intervals, we can rewrite equation (2.12) more explicitly as follows,

[a, b] + [c, d] = [a + c, b + d]

[a, b] - [c, d] = [a - d, b - c]

[a, b] - [c, d] = [min(ac, ad, bc, bd), max(ac, ad, bc, bd)]

[a, b]/[c, d] = [min(a/c, aid, b/c, bid), max(a/c, a/d, b/c, b/d)] (2.13)

provided 0 ' [c, d] in the division relation.

Interval arithmetic is commutative and associative.

[a, b] + [c, d] = [c, d] + [a, b]

[a, b] [c, d] = [c, d] - [a, b]

[a, b] + ([c, d] + [e, f]) = ([a, b] + [c, d]) + [e, f]

[a, b]. ([c, d] [e, f]) = ([a, b] [c, d]) [e, f]

But it is not distributive, however, it is subdistributive.

[a, b]-([c, d] + [e, f]) C [a, b] - [c, d] + [a, b] - [e, f]
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2.2.3 Rounded Interval Arithmetic and its Implementation

If floating point arithmetic is used to evaluate the interval arithmetic equations (2.13), there

is no guarantee that the roundings of the bounds are conducted conservatively. Floating

numbers are represented in the computer by a fixed length. The number of bytes to represent

a floating point number depends on the precision of the variable. For example, the IEEE

standard for a double-precision number has 64 bits, 8 bytes wordsize, and is stored in a

binary form (+)m -2e p , where m is the mantissa (0.5 < m < 1) and exp is the exponent.

Figure (2-1) illustrates how the information is stored in the binary form, a single bit for sign,

11 bits for exponent and 52 bits for mantissa. Since the mantissa is restricted to the range

0.5 < m < 1, the bit for 2- 1 is not used. The exponent is 1022 biased to ensure the stored

exponent is always positive. For example the number -0.125 is stored as 1011111111000 - --0.

Most left bit represents the sign -, next 11 bits 01111111100 is the biased exponent which is

1020-1022 = -2 and the rest of 52 bits which are all zero represents the mantissa 0.5. Hence

-0.5- 2-2 = -0.125. If x and x' are consecutive positive double-precision numbers, they

differ by an amount e called ulp (one Unit in the Last Place), so that E = 2 -53. 2 exp = 2 exp-53

Now it is possible to carry out the operation of interval arithmetic with rounding, so that

the computed end points always contain the exact interval as follows

[a, b] + [c, d] _ [a + c - E, b + d + E]

[a, b] - [c, d] [a - d - E, b - c + E]

[a, b] - [c, d] E [min(ac, ad, bc, bd) - E, max(ac, ad, bc, bd) + E]

[a, b]/[c, d] = [min(a/c, a/d, b/c, b/d) - E, max(a/c, a/d, b/c, b/d) + ] (2.14)

Each E in the equations can be obtained by E = 2 exp - 53 where exp is extracted from each

computed lower or upper bound. We refer to the definitions given in equations (2.14) as

rounded interval arithmetic.
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sign bit -2 53
2 -53

Figure 2-1: IEEE Format for Binary Representation of Double-Precision Floating-Point
Number, adapted from [18]

2.3 Review of Computation of Real Roots of Nonlinear

Polynomial Systems

The solution of systems of nonlinear polynomial equations can be computed using local

numerical techniques which employ some variation of Newton methods. These methods

though require good initial approximations to the roots and do not guarantee that all the

possible roots are found. On the other hand, global numerical techniques are designed

to compute all roots in some area of interest. Among the global methods, the Bernstein

subdivision-based technique has been favored in recent CAD related research. Details of

the method can be found in [18], [27], [29], and [30].

We will demonstrate this method with a single univariate polynomial equation f(u) = 0

of degree m over the range a < u < b. By making the affine parameter transformation

u = a + t(b - a) so that 0 < t < 1, we can write f(t) in Bernstein basis as:

f(t) E fi Bi,m(t) (2.15)
i=O



Chapter 2. Theoretical Background

Using the linear precision property,

t= 1 Bi,m (t) (2.16)

we can rewrite the Bezier function f(t) as a parametric Bezier curve f(t).

f(t)= = ) Bi,M(t) (2.17)
f(t) i=o fi

Now the problem of finding roots of the univariate polynomial has been transformed into

a problem of finding the intersection of the B6zier curve with the parameter axis which

can be solved using the recursive de Casteljau subdivision algorithm. Figure (2-2) shows

how the regions which do not contain the intersection points are discarded in the case of a

quadratic Bezier curve. The large triangle is the convex hull of the quadratic Bezier curve.

This triangle intersects the axis at two points t = a and t = b. Applying de Casteljau

subdivision algorithm to the Bezier curve with the control points being the vertices of the

large triangle at these parameter values, we obtain a small triangle, (shaded in the figure),

which also intersects the axis at two points. Such a recursive subdivision process, using

the convex hull property, can be continued until the interval width becomes as small as

required. But when there are more than one roots in the interval, the interval will not be

reduced to arbitrarily small size. In such cases binary subdivision may be introduced [25].

Binary subdivision is applied when the box size did not reduce more than 20% from the

previous step, in accordance with [25]. An extension of this algorithm to n-dimensions is

described in [29], [30]. Moreover, if floating point arithmetic is employed, accuracy in a

subdivision method could be lost for high degree polynomials. Consequently, in order to

guarantee a robust and numerically verifiable solution, the Bernstein subdivision method,

coupled with rounded interval arithmetic has been developed in [18], [20], [19]
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f(t)

t = a t = b

Figure 2-2: de Casteljau Algorithm Applied to the Quadratic Bezier Curve, adapted from
[18]
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Differential Geometry of Surfaces

3.1 Introduction

In this chapter, we present the mathematical basis for the development of decomposing a

surface into specific range of curvature, with particular emphasis on B-splines and Bezier

patches. This chapter draws its contents to a significant degree from [18]. The differential

geometry of curves and surfaces is fundamental in CAGD. The curves and surfaces treated in

differential geometry are defined by functions which can be differentiated a certain number

of times. A book by Hilbert and Cohn-Vossen [12] and a recent book by Koenderink

[15] provide intuitive access to the extensive mathematical literature on three-dimensional

shape analysis. The books by Struik, [31], doCarmo, [6], and Banchoff et al, [2] offer firm

theoretical basis to the differential geometry aspects of three-dimensional shape description.

In this section, we summarize the relevant definitions employed in this work.

A general parametric surface can be defined as a vector-valued mapping from two-

dimensional parametric uv-space to a set of three-dimensional coordinates

r(u, v) = [x(u, v), y(UV), z(u, v)]T (3.1)

The shape of a surface is completely characterized by two important geometric structures:



Chapter 3. Differential Geometry of Surfaces

the first and second fundamental forms. The first fundamental form I provides metrical

properties of surfaces such as measurement of lengths, areas and angles between two curves

on the surface. It is defined as the dot product of infinitesimal displacement dr with itself.

I = dr -dr = (rdu + redv) -(rdu + redv)

= Edu2 + 2Fdudv + Gdv2

= dq[r]dqT  (3.2)

where subscripts denote partial derivatives, and

E = ru*ru, F=ru.rv, G=rv.r, (3.3)

dq = [du dv] (3.4)

[rF) (3.5)

The second fundamental form II permits the analysis of the surface curvature at a given

point and is defined as the dot product of infinitesimal displacement dr and infinitesimal

variation dN of the surface unit normal vector N.

II = -dr - dN = -(rudu + rodv) - (Ndu + Ndv)

= Ldu2 + 2Mdudv + Ndv2

= dq[A]dqT  (3.6)

where

N = r r(3.7)
|ru x r i

L = N-ruu, M=N-r,,, N=N-r,, (3.8)

[] = M (3.9)(LMN
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Figure 3-1: Definition of Normal Curvature, adapted from [18]

and (r, - N) = 0, 2(r, N) = 0 are used in the derivation . In order to quantify the

curvatures of a surface S, we consider a curve C on S which passes through point P as

shown in Fig. (3-1). t is the unit tangent vector and n is the unit normal vector of the curve

C at point P. If k is the curvature vector of the curve C on the surface S at P, which can

be obtained by k = i, we can represent k as sum of a normal and a tangential component

k. and k9 . k. is called the normal curvature vector and kg is called the geodesic curvature

vector. The normal curvature vector can be expressed as a multiple of the unit surface

normal vector N namely

k, = KN (3.10)

where in is the normal curvature and can be obtained by differentiating the equation N t = 0

along C with respect to the arc length.

dt dN dr dN
-= N=- t
ds ds ds ds
II Ldu2 + 2Mdudv + Ndv2  L + 2MA + NA 2

I Edu2 + 2Fdudv + Gdv2  E + 2FA + GA2

where A = d specifies the direction of the curve. The sign convention used in equation

(3.11) ensures that positive r is on the side of the surface opposite to the direction of the
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normal. At any given point (u, v), , in general varies with each direction A. The extreme

values of i, can be obtained by evaluating L = 0 which gives:

(E + 2FA + GA2)(AN + M) - (L + 2MA + NA2)(AG + F) = 0 (3.12)

Since

E+2FA+GA2 = (E+FA)+A(F+GA),

L+2MA + NA 2 = (L+M A) + A(M+NA)

equation (3.12) can be reduced to

(E + FA)(M + AN) = (L + MA)(F + AG) (3.13)

Using equation (3.13), equation (3.11) can be rewritten as:

L + 2MA + NA2  M+AN L + MA
K E+2FA+GA2  F+AG E+AF

Therefore a satisfies the two simultaneous equations

(L + KE)du + (M + KF)dv = 0

(M + ,F)du + (N + rG)dv = 0 (3.15)

These equations can be simultaneously satisfied if and only if

L + E M + (3.16)

M + KF N + rG

This quadratic equation in a gives the upper and lower bounds of the normal curvature,

which are the maximum principal curvature tmaz and the minimum principal curvature

Kmin. The corresponding directions A define directions in the uv-plane and the correspond-
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ing directions in the tangent plane are called principal directions of curvature and are in

general orthogonal. The two roots are given by

Kmax = H + 1H2 - K (3.17)

Kmin = H - H 2 - (3.18)

where K is the Gaussian curvature and H is the mean curvature defined by

LN - M
2

K = EG- F 2  (3.19)EG - F2
2FM - EN - GL

H = (3.20)
2(EG - F 2)

From equations (3.17), (3.18), it is readily seen that

K = KmaxKmin (3.21)

H = Nmax + Kmin (3.22)
2

We can also define the root mean square curvature as,

S 2(3.23)
Irms = 12max + in (3.23)

If Kmax and Kmin have the same sign the Gaussian curvature is positive and the point is

called elliptic point of the surface. Any patch on an ellipsoid is an elliptic region. If either

of r1 max or Kmin is zero, the Gaussian curvature is zero and the point is called parabolic.

Developable surfaces have zero Gaussian curvature at their regular points. Finally, if Imax

and rmin have different signs the Gaussian curvature is negative and the point is called

hyperbolic. Any point on a hyperbolic paraboloid is a hyperbolic point. When max and

Prmin are identical, the point approximates a sphere and is called an umbilical point. In the

special case, where the identical principal curvatures vanish, the surface becomes locally

flat. Note that at the flat point, K = H = 0. A spherical umbilic occurs at an elliptic
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point, but never at a hyperbolic point. From equation (3.11) it is apparent that at an

umbilic I and II are proportional because n, = constant, and consequently, we have the

following relation at the umbilic

L MNS=- M - N (3.24)

The net of lines, that have as tangents the principal curvature directions at all of their points,

form two sets of curves intersecting at right angles. They are called lines of curvature. The

lines of curvature depend only on the shape of the surface, and not upon the parametrization.

Lines of curvature provide a method to describe the variation of principal curvatures across

a surface. At umbilical points only, the principal directions are indeterminate and the net

of lines of curvature may have singular properties, [1], [18], [21]. Lines of curvature are

obtained by integrating equations (3.15).

3.2 Stationary Points of Curvature

To subdivide the surface into regions of specific range of curvature, we need to determine

the following, [18].

1. Locations of all the stationary points of the curvature and the associated values of

curvature, so as to provide a correct topological decomposition of the surface on the

basis of curvature.

2. Global maximum and minimum of the curvature to find the overall range of curvature.

The surface of interest is an integral B-spline patch (with non-uniform knots). A B-spline

patch is a piece-wise polynomial, and a powerful generalization of polynomial Bezier patches.

Therefore, we subdivide the B-spline surface into Bezier patches by inserting knots, so we

can deal with polynomials [3], [5], [16]. An integral Bezier patch can be defined as,

m n

r(u, v) = PijBi,m(u)Bj,n(v) (3.25)
i=O j=O
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where m, n are the the degrees of the patch in u, v parametric directions, and Pij are the

control points, 0 < u, v < 1 and Bi,m(u), Bj,n(v) are the Bernstein basis functions [33].

An additional assumption is that the surface is regular, i.e. its Jacobian has full rank and

therefore ru x rv 0. Points where r, x r, = 0 correspond to either singularities of the

parametrizations or intrinsic degeneracies of the surface such as ridges and cusps.

Gaussian, mean and principal curvatures can be evaluated in terms of parametric deriva-

tives of r(u, v) [6]. Let the curvature in question be denoted by C(u, v), then, to locate all

the stationary points of curvature and to find the global maximum and minimum values of

the curvature to provide a correct topological decomposition of the surface, the following

need to be evaluated, for each separate Bezier patch, [18]:

1. The four values of curvature at the parameter domain corners

C(0, 0), C(0, 1), C(1, 0), C(1, 1) (3.26)

2. Stationary points along parameter domain boundaries (roots of the 4 equations)

C,(u, 0) = 0, CU(u, 1) = 0, <0 <U 1

C(0, v) = 0, C,(1, v) = 0, 0 < v < 1 (3.27)

3. Stationary points within the parameter domain (roots of the 2 simultaneous equations)

C, (u, v) = 0, C, (u, v) = 0, 0 < u, v < 1 (3.28)

The curvature values at the parameter domain corners are readily computed. The com-

putation of stationary points of the Gaussian, mean and principal curvatures along the

boundary and within the parameter domain are further discussed in sections 3.2.1, 3.2.2

and 3.2.3 respectively.



Chapter 3. Differential Geometry of Surfaces

3.2.1 Gaussian Curvature K

The governing equation for computing the stationary points of Gaussian curvature along

the boundary, are obtained by substituting equation (3.19) into (3.27) and expressing the

equation such that the denominator and the numerator include exclusively polynomials,

[18].

A(u, 0) A(u, 1)K,(u, 0)- (u, 0) , K,(u, u, ) - 0 < u < 1 (3.29)
S6(u, 0) S 6 (u, 1)

K,(0, v) , v) 0, K,(1, v)= (1,v) 0 0 < v < 1 (3.30)
S 6(0, v) S6(1, v)

where

S = ISI = Iru x rv (3.31)

A = A,S 2 - 4(S S,)A (3.32)

A = A,vS 2 - 4(S S,)A (3.33)

A, A are polynomials of degree (10m- 7, 10n-6), (10m-6, 10n- 7) in u and v. Polynomial

A and its partial derivatives and partial derivatives of S are given in appendix A. Since we

are assuming a regular surface, S $ 0, we need only set the numerators of equations (3.29)

and (3.30) to zero, resulting in

A(u,0) =0, A(u, 1) = 0, 0< u < 1 (3.34)

A(0,v) = 0, A(1,v)= 0, O< v <1 (3.35)

Therefore, for stationary points of Gaussian curvature along the domain boundary we need

to solve four univariate polynomial equations (3.34) of degree 10m - 7 in u and (3.35) of

degree 10n - 7 in v.

For the stationary points within the domain, we substitute equation (3.19) into (3.28)
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which yields

Ai(u, v)
S 6(u,v)

As S $ 0, equations (3.36) are satisfied if

A(u,v) = 0, A(u,v) = 0, O< , v<1

which are two simultaneous bivariate polynomial equations of degree (10m - 7, 10n - 6),

(10m - 6, 10n - 7) in u and v.

3.2.2 Mean Curvature H

Similarly to the Gaussian curvature, we have the following equations to evaluate the sta-

tionary points of mean curvature H along the boundary, [18].

B(u, 0)
HU(u 0) 2S(u, 0) 0

B(0, v)
H(0, v)2S , 0,

2S6(0, v)

( 1) B(u, 1)
HU(u, 1) 0,

2S 5 (u, 1)

B(1,v)
H(1, v) (1v) = 0,

2S5(1, v)

B = BuS 2 - 3(S.

B = BvS 2 - 3(S

Su)B

S,)B

(3.40)

(3.41)

fB, 1B are polynomials of degree (9m - 6, 9n - 5), (9m - 5, 9n - 6) in u and v. Polynomial

B and its partial derivatives are given in appendix A. As S j 0, we need only set the

numerators of equations (3.38) and (3.39) to zero, resulting in

B(u, 0) = 0,
B(0, v) = 0,

B(u, 1) = 0,

B(1, v) = 0,

-0, K,(u, v) = v , OL , v 1v)S6(U,v) (3.36)

(3.37)

where

O<u<l

0<v<l0 < V < 1

(3.38)

(3.39)

O<u<l

O<v<l0 < V < 1
(3.42)

(3.43)
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Therefore, for the stationary points of mean curvature along the domain boundary we need

to solve four univariate polynomial equations (3.42) of degree 9m - 6 in u and (3.43) of

degree 9n - 6 in v.

For the stationary points within the domain, we have

B(u, v) B(u, v)H,(u, v) (uv) 0, H(u,v)v) 0, 0 < u v < 1 (3.44)
2S 5(u, v) 2S 5 (u, v)

Since S 5 0, equations (3.44) reduce to two simultaneous bivariate polynomial equations

B(u, v) = 0, B(u, v) = 0, O0 , v < 1 (3.45)

3.2.3 Principal Curvature r

To obtain the stationary points of principal curvature n along the domain boundaries, we

substitute equations (3.17) and (3.18) into (3.27) and express the equations such that the

denominator and the numerator only include polynomials and square root of polynomials,

[18].

f 2S(u, 0) f2± (u, O) 0S(u, 0) = 2 O=01 0 < U < I
fi 2S(7, 0)

(u, 1) = , 1)( 1) 0 0 < < 1 (3.46)
2S 5 (u, 1) f3 (u, 1) -

'zv(O0,v) = g1(0,v) ±9g2(0,v) Vf 3 (0,v) 0 0 O<v<<2S91(0, v ) f(0, v) )

,(1,v) = g (1,v)± (1,v) f3 (1v)0, 0< v < 1 (3.47)
2S 5(1, v))/3(1v)

The plus and minus signs correspond to the maximum and minimum principal curvatures,

and fi (u, v), f 2(u, v), f 3 (u, v), g1(u, v) and g2 (u, v) are polynomials of degree (14m-9, 14n-

8), (9m - 6, 9n - 5), (10m - 6, 10n - 6), (14m - 8, 14n - 9), (9m - 5,9n - 6) in u and v
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parameters and are given by

fi(u, v) = (BBu - 2A,S 2)S 2 + (8AS 2 - 3B 2 )(S SU) (3.48)

f 2(u, v) = BuS 2 - 3(S Su)B (3.49)

f 3 (u, v) = B 2 - 4AS 2  (3.50)

gx(u, v) = (BB, - 2AvS 2)S 2 + (8AS 2 - 3B 2)(S • S,) (3.51)

g2(u, v) = BS 2 - 3(S S,)B (3.52)

First we assume that f3 5 0 and also S $ 0, then equations (3.46), (3.47) become

fi(u, 0) f2(u, 0) f 3(u, 0) = 0, fa(u, 1) - f2(u, 1) f3(u, 1)= 0, 0 u < 1 (3.53)

gl(0, v) ± g2(0, v) /f 3 (0, ) g2(, g(1,V) g2(v) f(1,v) = 0, 0 < v < 1 (3.54)

Consequently, for the stationary points of principal curvatures along the boundary we

need to solve four univariate irrational equations involving polynomials and square roots of

polynomials (which arise from the analytic expressions of principal curvatures).
When f3 = 0 (or equivalently H 2 - K = 0 if S # 0), equations (3.46), (3.47) become

singular. This condition is equivalent to the point where the two principal curvatures are

identical, i.e. an umbilical point. If the umbilical point coincides with a local maximum

or minimum of the curvature, we cannot use equations (3.53) and (3.54) to locate such a

point. In this case we need to locate the umbilical point first. To locate umbilical points

along the domain boundaries, we need to solve the following equations

H2(u, 0) - K(u, 0)= f 3 (u, 0) = 0, H2(u, 1) - K(, 1) = f3(u, 1) =0, O u 1 (3.55)
4S6 (, 0) 4S6(,1)

H 2 (0 ) - K(0, v) f3(0, v) 0, H(1, v) - K(1,v)= f(1) =0, 0<v <l (3.56)
4S6 (0, v) 4S 6(1,v)

Since S # 0, we need to solve f3 (u, 0) = 0, f3 (u, 1) = 0, f 3 (0, v) = 0, f3 (1, v) = 0. Then we

use the criterion (see Appendix B) at the umbilic to check if the point is a local extremum

of the principal curvatures [18], [21].

In the case of stationary points of principal curvature n within the domain, the simul-
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taneous bivariate equations (3.28) become

K(u, ) = (u,)f 2(u,) = 0, 0 < u, v < 1
2S5(u, v) f3 ,

nKV(, v) = u, = 0, 0 < u, v < 1 (3.57)

Assuming f3 : 0 and S j 0, we obtain

f(u, v) f 2(u, v)f, v )= 0, g(, v) g2( u ,v)3(, v)= 0, 0 u, v < 1 (3.58)

These are two simultaneous bivariate irrational equations involving polynomials and square

roots of polynomials (which arise from the analytical expressions of principal curvatures).

At the umbilics, equations (3.57) become singular and similarly to the univariate case

for the domain boundaries, we need to locate the umbilical points first by finding the roots

of the bivariate polynomial equation f 3 (u, v) = 0. Let

W(u, v) = H 2 (u, v) - K(u, v) (3.59)

then W(u, v) = 4S(,v) is a non-negative function, therefore W(u, v) has a global minimum

at the umbilic, see Appendix B. The condition for global minimum at the umbilic implies

that VW = 0 or equivalently (given that f 3 (u, v) = 0)

W,- = =- 0, W, = = 0 (3.60)

Therefore, the locations of umbilics are the solutions of the following three equations, as-

suming S j 0

f 3u(u, v) = 0, f 3v(u, v) = 0, f3 (u, v) = 0 0 < U, v < 1 (3.61)
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These equations can be reduced to :

BBu - 2A,S 2 - 4A(S. Su) = 0,

BBv - 2A,S 2 - 4A(S S,) = 0,

B 2 - 4AS 2 = 0 (3.62)

with 0 < u, v < 1. Since f3 (u, v) = 0 at the umbilics, equations (3.58) reduce to fi (u, v) = 0,

gl(u, v) = 0. If we substitute the first equation of (3.62) into equation (3.48) and use the

fact f3 = B 2 - 4AS 2 = 0, we obtain fi(u, v) = 0. Similarly by substituting the second

equation of (3.62) into equation (3.51), we obtain gl(u, v) = 0. Consequently, the solutions

of equation (3.58) include not only the locations of extrema of principal curvatures but

also the locations of the umbilical points. Then we use the criterion in Appendix B at the

umbilical points to check if the umbilical point is a local extremum of principal curvatures.

3.3 Contouring

The constant curvature lines divide the surface into regions of specific range of curvature.

The contouring levels should be determined to faithfully represent the curvature distribu-

tion. To do so, the following properties should be determined, [18]:

* Global maximum and minimum curvature values in the entire domain to find the

range of curvature values.

* Locations of all the local maxima and minima of curvature inside the domain around

which loops may be formed.

* Locations of all the saddle points of the curvature where the contour lines cross or

exhibit more complex behavior.

Classification of stationary points of functions is briefly reviewed in Appendix B.
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3.3.1 Finding Starting Points

If the original, B-spline surface is subdivided along the isoparametric line which contain the

local maxima and minima of curvature inside the domain, and if the contouring levels of

curvature are chosen such that the contour lines avoid saddle points, each sub-patch will

contain simple contour branches without any loops or singularities. Therefore, we can find

all the starting points of the various levels of contour lines along the parameter domain

boundary of each sub-patch by finding the roots of following equations. These equations

are formulated for the corresponding B6zier patches. Solutions to these equations yield local

parametric coordinates, on the Bezier patch and must be translated to global parametric

coordinates, on the B-spline surface. Starting with Gaussian curvature, [18]

A(u,O) _

S4(u, 0)
A(O, v)

SCK,
S4(0, v)

A(u, 1)K(u, 1)- -(u, ) -CK
S4(U, 1)

A(1, v)
K(1, v)- -A(1- v CKS4(1, v)

is the constant Gaussian curvature value. These equations can be rewritten as

CKS 4 (u, 0)- A(u, 0) = 0,

CKS 4(0, v) - A(0, v) = 0,

CKS 4(u, 1)- A(u, 1) = 0 0 <u 1

CKS 4(1, v) - A(1,v)= 0 0 < v< 1

Equations (3.65), (3.66) are univariate polynomials of degree 8m - 4 in u and 8n - 4 in v

respectively.

Similarly for mean curvature

B(u,0)
CH,2S3(u, 0)

B(0,v)
2S3(0, v)

H(u, 1)= 2 1-- =CH O < < 1
2S3(u, 1)
B(1,v)

H(1, v)= 2 S3(,- CH 0 < v < 1

K(u, 0)

K(0, v)

where CK

follows

0<u<l

0<v<l0 < V < 1

(3.63)

(3.64)

(3.65)

(3.66)

H(u, 0)

H(0, v)

(3.67)

(3.68)
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where CH is the constant mean curvature value. These equations can be rewritten as follows

B(u, 0) - 2CH S2(, O)S2 (u, 0) = 0 u,B(u, 1)- 2CHV S2 (u, )S2 (u,1) = 0 0 < < 1 (3.69)

B(O,v) - 2CH S(O,v)S2 (0, v) = 0, B(1, v) - 2CH VS S 2 (1, v) = 0 0 <V < 1 (3.70)

Equations (3.69), (3.70) are the univariate irrational functions involving polynomials and

square roots of polynomials which come from the normalization of the normal vector of the

surface, see equation (3.7). B(u, v) is a polynomial of degree (5m - 3, 5n - 3) and S 2(u, v)

is a polynomial of degree (4m - 2, 4n - 2).

Finally for the principal curvatures

K(u,0) -= 2 3(u,0) =CK, , (u,1)= 2S(u , 1) = C, 0< <1 (3.71)
2S 3 (u,0) 2S3(u,1)

B(0, v) ± %If3 (0, v) S(1, v) ± V//3 (1, v)
(0, V) -- 2= v) =C,, f(1, v) =C, 0 <v<<1 (3.72)

2S3(0, v) 2S (1, v)

where CQ is the constant value of principal curvature and f 3(u, v) is a polynomial function

defined in equation (3.50). Equations (3.71) and (3.72) can be rewritten as follows

B(u,0) ± f3(u,O) - 2CS S2(u,0) S2(u,O) = 0 0 < u < 1
B(u, 1) ± f 3(u, 1)- 2C,,S 2 (u, 1) S 2 (u, 1) = 0 0 < u < 1 (3.73)

B(o, v) i f3(0, v) - 2CS 2(O, v) S2(0, v) = 0 0 < v < 1
B(1,v) ± f3 (1,v)- 2CS 2(1,v)S 2(1,v)= 0 0 < v < 1 (3.74)

Equations (3.73), (3.74) are the univariate irrational functions involving polynomials and

two square roots of polynomials which come from the analytical expression of the principal

curvature and normalization of the normal vector of the surface.

Since non-loop contour lines must start from a domain boundary and must end at a

domain boundary point, the starting points for contour lines of curvature occur in pairs.
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3.3.2 Mathematical Formulation of Contouring

Contour lines for constant curvature satisfy the following equation

C(u, v) = constant (3.75)

where C(u, v) is a curvature at the given point (u, v) on the B-spline surface. Curvature

contouring takes place on the original B-spline surface and not on the B6zier patches. We

now consider a space curve which lies on the surface represented by the parametric form

r(t) = r[u(t), v(t)]. Differentiating the equation (3.75) with respect to t yields

cu + Cvi = 0 (3.76)

where it, i; are the first derivatives with respect to t. (i, i) gives the direction of the contour

line in parameter space. The solutions to the equation (3.76) are

S= (C,, v = -(C, (3.77)

where ( is an arbitrary non zero factor that can be chosen to provide arc-length parametriza-

tion as follows

1
( = - (3.78)

C, and C, are evaluated on the B-spline surface.

Contour lines of Gaussian curvature for K=O separates a patch into elliptic (concave

and convex) and hyperbolic (saddle) regions [24]. This information is useful for 3D and 5D

machining. Also the union of contour lines of maximum principal curvature for rmax=O

and minimum principal curvature for Kmin=O separate the region in a way similar to the

contour lines K = 0.

We used the Trip Algorithm introduced by Preusser [28] to polygonize the area between
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contour lines. The points of the contour lines are computed successively by integrating the

initial value problem for a system of coupled nonlinear differential equations (3.77) using

the variable stepsize and variable order Adams method [26]. Starting points were computed

by the method described in section (3.3.1). Accuracy of the contour line depends on the

number of points used to represent the contour line by straight line segments. Note that

for principal curvatures, C, and C, become singular at umbilical point, therefore, we avoid

the contour level which is equivalent to the curvature value at the umbilics.
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Parallel Processing- Parallel

Virtual Machine

4.1 Introduction and Motivations

In the area for CAD, several algorithms require a specific task to be repeated several times.

Examples include the repeated intersection of parametric surfaces, [4] and, in our case, the

repeated extraction of differential properties from several B6zier patches. The nature of the

algorithms, make parallel processing very appealing. In the MIT Ocean Engineering Design

Laboratory that the present work was implemented, no single computer has the ability to

process in parallel. Under certain circumstances though, the available computers can be

linked to create a pseudo or virtual parallel computer. In order to do so, Parallel Virtual

Machine was used.

Parallel Virtual Machine (PVM) is a software system that enables a collection of hetero-

geneous computers to be used as a coherent and flexible concurrent computational resource,

[10], [22], [7]. The individual computers may be shared- or local-memory multiprocessors,

vector supercomputers, specialized graphics engines, or scalar workstations, and may be

interconnected by a variety of networks, such as ethernet. PVM support software executes

on each machine in a user-configurable pool, and presents a unified, general, and powerful
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computational environment for concurrent applications. User programs written in C, C++

or Fortran, are provided access to PVM through the use of calls to PVM library routines

for functions such as process initiation, message transmission and reception, and synchro-

nization via barriers or rendezvous. Users may optionally control the execution location

of specific application components. The PVM system transparently handles message rout-

ing, data conversion for incompatible architectures, and other tasks that are necessary for

operation in a heterogeneous, network environment.

PVM is ideally suited for concurrent applications composed of many interrelated parts.

PVM is particularly effective for heterogeneous applications that exploit specific strengths

of individual machines on a network. As a loosely coupled concurrent supercomputer envi-

ronment, PVM is a viable scientific computing platform. PVM system has been used for a

number of applications such as molecular dynamics simulations, superconductivity studies,

distributed fractal computations, matrix algorithms, and in the classroom as the basis for

teaching concurrent computing.

The system is composed of,

* Pvmd daemon program

* Libpvm programming library

* Application Components

The Pvmd daemon program is mainly a message router, but is also a source and sink

of messages. It runs on each host of virtual machine and provides inter-host point of

contact. It authenticates tasks and provides fault detection. In general, the Pvmd daemon

is more robust than application components. The Libpvm programming library is linked

with each application component and provides the low-level PVM "syscalls". It provides

the functions for data transferring and implementation of the parallel processing. The

application components are written by the user in PVM message-passing calls and are

executed as PVM "tasks".

The PVM system uses its own terminology. For instance, a Host is a physical machine

(Unix workstation). One or more hosts compose a Virtual Machine. A Process is a program,
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data or stack like a Unix process or a node program. A Task is a PVM process, a small

unit of computation. Finally, a Message is an ordered list of data sent between tasks.

4.2 Using PVM

In order to initialize PVM, we create a file, named hostfile, that contains the names and

addresses of all the hosts that are going to be used. All the hosts listed in the hostfile will

be automatically added on the virtual machine, unless they are preceded by an ampersand

(&). In this case, the host will not be added automatically, but the user may elect to do so

manually through the PVM console. The user will be prompted for the passwords on each

machine. After the PVM initialization, all the available hosts are interconnected and form

the Virtual Machine.

The PVM system provides a console for monitoring the process. Through the console,

the user can add or delete hosts, monitor individual processes running and terminate either

these processes, or the whole system.

There are usually two different categories of application components, the master and

the slave processes. The master process is equivalent to the main program in regular

programming, while the slave processes are equivalent to subroutines. In conventional

programming, variables are passed from the main program to the subroutines and the results

from the subroutines to the main program. Similarly, in PVM programming, variables that

are needed for a Task, are passed from the master process to the slave processes and the

results are passed back from the slaves to the master process. The passing of the information

is done through an ordered list of data (Messages) and with the aid of the Libpvm "syscalls".

Unfortunately, "syscalls" allow the passing of integers, floats and characters which prevents

the user to pass directly from the master process to the slaves, whole structures and classes.

Structures and classes must be decomposed to simple elements (floats and integers), passed

with the aid of "syscalls" and then recomposed again on the other side of the system. This is

one of the drawbacks of using PVM. Each Task is uniquely identified (per virtual machine),
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and consequently the right data are send to the right Task. The tasks are similar in nature

to each other. They have the same input and output variables. In other words, they behave

like different calls to the same subroutine.

4.3 Programming Procedure

From the programming point of view, the master process must first establish contact with

the PVM daemons. It will then know how many hosts are available. The number of tasks

is preset by the needs of the algorithm. If the number of tasks is smaller than the number

of hosts, some hosts, the last ones in the hostfile list, will be idle. For this reason, it is

important to list the hosts in descending computational power in the hostfile in order to

maximize performance. This excludes the home machine which in any case must be listed

first.

If the number of hosts is smaller than the number of tasks, each host will be assigned

a task and the remaining tasks will wait for the first host to finish its previous assignment.

It is important to note here that as soon as one host terminates its task, it is assigned a

new task. There is no need for all hosts to terminate their tasks before new tasks can be

assigned.

After a task has been assign to a host, the data transfer needs to take place. The variables

needed to perform the task are transferred from the master program to the slave program.

This later program runs on the particular host selected. The data must be transferred as

integers, floats and characters. These data are received from the slave program in the exact

same order as they were send from the master program. The slave program executes the

task and the results are send back to the master program. The master program receives the

results and signals that the particular host has terminated its task and that it is therefore

free to be assigned a new one. This process is repeated until no more tasks remain.
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Implementation

5.1 Introduction

The interrogation procedures described in the previous chapters were implemented in a

C++ computer code. Basic input to this program is the B-Spline surface, described math-

ematically by the orders of the spline (degree + 1) in each parametric direction, their knot

vectors and control points. Output of the program is the color coded contour maps of

the surface's curvatures (Gaussian, mean, maximum principal, minimum principal and root

mean square curvatures).

Since the B-spline surface is a piecewise polynomial and a powerful generalization of

polynomial Bezier surfaces, it is preferable to first subdivide it into several Bezier patches,

and perform the computations in polynomials, and then assemble the results back to the

original form.

5.2 Methodology

5.2.1 Major Libraries and Basic Classes

The computer code is supported by several libraries. The most important one is the Ge-

ometry Library that defines classes related to B-splines and Bezier curves and surfaces and
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supports their operations. The library provides a number of routines, including operators

to read and write the surfaces in terms of their mathematical representation, and functions

to evaluate the derivative and integral Functions for subdividing B-splines to Bezier patches

are also available. The Geometry Library also provides means for representing polynomial

equations and supports their operations. The Geometry Library was assembled by the au-

thor, in part from pieces of pre-existing code, [17], [32]. Modifications were needed to be

made in order to generalize the functions and make them fit the needs of the program.

In the course of this work, other minor libraries were also developed. Their description

will come latter, as the methodology for the computer coding unfolds. In addition, several

other, pre-existing libraries were used, and will be mentioned later.

In addition to the classes residing in the Geometry Library used to describe mathemat-

ically free-form surfaces, the most important class developed is called solution. It refers to

any point on the surface, (u, v) in parametric space, along with its properties. This class

is referred to as such, because most of the points that belong to it are solutions to a single

or several polynomial equations. The fields of this class include, the local (withing the par-

ticular B6zier patch) and global (on the whole B-spline surface) coordinates in parametric

space, (u, v) and their classification as a maximum, minimum, saddle, umbilic or regular

point. Whenever we refer to a point on the surface in question, we refer to the particular

values of this class.

5.2.2 The Main Program

The main program, reads a B-spline surface from a file. The B-spline surface is represented

by a class defined in the Geometry Library. It is then subdivided to Bezier patches using

the Oslo algorithm, [3], [5], [16] which also resides in the Geometry Library. If the surface

in question is a B6zier surface, the decomposition will yield one B6zier patch.

The B6zier patches obtained by the Oslo decomposition, [16], are dynamically allocated

in an array, and then each is checked for stationary points (local maximum, minimum and

saddle points). Each B6zier patch is examined, one at a time, as part of a loop. The
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mathematical representation of the Bezier surface yields the system of polynomial equa-

tions necessary for the evaluation of the stationary points within the patch, Eq. (3.28), and

the single equation for the evaluation of the stationary points on the boundaries, Eq. (3.27).

The mathematical formulation is presented in chapter 3 and appendix A. The formulated

equations were solved by means of a library function developed by Hu, [13], [14], which

was itself based on an earlier implementation based on Maekawa [18] and Sherbrooke, [29].

This function is based on the Bernstein subdivision method, and is reviewed in Chapter

2. Solutions to these equations yield the locations for the stationary points in terms of

local coordinates, parametric u, v values of the particular Bezier patch examined. A trans-

formation takes place to convert these locations in parametric u, v values of the original

B-spline.

Once all the stationary points have been found, the global maximum and minimum

curvatures of the B-spline, and thus the range of values of curvature can be found. The

range of curvature values is then subdivided to a preset number of increments. These

increments represent the number of color coded bands required for the interrogation of the

surface. After this procedure is completed, the values of curvature for the constant value

contours is set, and the program proceeds to find their respective starting points.

Starting points for constant curvature of height value contours are found along the

boundaries of the B-spline surface as well as on isoparametric lines passing through local

maxima and minima. Either u = const or v = const is selected for the isoparametric

lines. Note that isoparametric lines need not pass through the saddle or umbilic points

(that are not extrema). Computations are again performed on Bezier patches. Each Bezier

patch containing a boundary of the original surface or containing part of an isoparametric

line, leads to certain nonlinear equations, (see section (3.3.1)), that are solved for the

particular starting points, Fig. (5-1). Patches that do not contain a B-spline boundary and

an isoparametric line, are not involved in the computation. Solutions to these equations yield

the locations of the starting points in terms of local (Bezier patch) coordinates. A similar

transformation to the one performed earlier for the stationary points, is required (to bring
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Figure 5-1: B-Spline Decomposition - Finding Starting Points

the solutions to the u-v parameter space of the B-spline surface patch). The mathematical

formulation for the equations corresponding to the starting points, is presented in chapter

3 and appendix A. Each starting point is represented by the class solution, and includes

information on the value of the curvature.

The last major computational procedure involves tracing of each constant value contour,

from one starting point to another. The isoparametric lines abstractly subdivide the original

B-spline surface into several regions. Each region is treated independently. The starting

points on each region are sorted with respect to their counterclockwise distance from the

lower left corner, Fig. (5-2). This is necessary for the polygonization process. Corner points

are also allocated. A starting point on an isoparameter line will be allocated for both regions

the isoparameter belongs to. For each region, all the starting points are loaded in a doubly

linked list of solutions, so that the neighbors of every single point are known. The first
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Figure 5-2: Tracing of the Contour Lines

and last points are identical, the lower left corner point. The integration is performed by

using the Adams method, implemented by a NAG routine [26]. The integration step is an

important parameter. Depending on the problem, the integration step takes values 15 to 50

times smaller than the width of the region (in the parameter space). Integration is initiated

at one starting point and ends at another. Care is taken so that each contour is traced only

once. For each particular region, points representing the constant value contours, including

the starting points, are stored in a linked list of doubly linked lists of solutions. This data

structure is appropriate for the polygonization.

After the integration part is completed, the constant curvature contours are available.

To obtain the color coded contour regions we proceed as follows. Polygonization takes place,

using a variation of the Trip algorithm [28]. The polygonization converts the complicated

data structure and creates polygons with particular color code, according to their respective

values of height or curvature. The output is written in a file and visualized on the screen in

the form of color coded contour regions, examples of which are found in the next chapter.
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Figure 5-3: B-Spline Decomposition - Finding Stationary Points using Parallel Program-
ming; deslab, fornix, fucus and fetus.mit.edu are names for various MIT Design Laboratory
workstations

5.2.3 The Master Program - Parallel Programming

The decomposition of the original B-spline to several B6zier patches, allows the implementa-

tion of parallel programming. The program described above has three major computational

parts: finding the stationary points, finding the starting points and integrating for the

contours. All three parts can be performed in parallel.

To find the starting points in parallel, each Bezier patch that has been loaded on the

dynamically allocated array, is send to a different host as part of an independent task,

Fig. (5-3). Each task returns the stationary points of the corresponding B6zier patch. A

transformation takes place so as to get the stationary points in terms of global coordinates

on the original B-spline surface patch.

Starting points are also found using parallel processing. Each B6zier patch that needs
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Figure 5-4: Tracing of the Contour Lines - Parallel Programming

to be examined, Fig. (5-1), is assigned to a different host as part of a separate task. Results

yield the starting points on each corresponding B4zier patch, so a transformation is also

needed.

Finally, the integration process can be performed in parallel. This time it is not the

Bezier patches that provide the subdivision to the large problem, but rather each different

region resulting by the tracing of isoparameters going through the maxima and minima of

the B-spline surface curvature, Fig. (5-4). Each region is treated independently and assigned

to a different host.

5.2.4 Implementation of Rounded Interval Arithmetic

The implementation described so far, was initially developed using double precision floating

point arithmetic. Floating point arithmetic is associated with uncontrollable numerical

error. Due to this fact, inaccuracies in the formulation and solution of the interrogation

equations, grow and cause possible loss of a root. Maekawa [18] explains how solutions to

simple polynomial equations using floating point arithmetic, can be incomplete in terms of
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the number of roots found. For this reason, the same implementation was developed using

rounded interval arithmetic.

An introduction to the features and advantages of rounded interval arithmetic is pre-

sented in chapter 2. In short, rounded interval arithmetic, coupled with the Bernstein

subdivision method for the solution of non-linear systems of polynomial equations, guaran-

tees not to miss any roots.

There are two important tasks that need to be performed in rounded interval arithmetic:

the formulation of the equations, and the process of their solution. For this reason, a new

class called isolution was created. It has the exact same features of the class solution but

instead of using fields expressed as floats, it uses fields expressed as rounded intervals.

Similarly, a Geometry Library using rounded interval arithmetic was created. Interval

arithmetic was used to formulate the system of equations for the stationary points and the

equations for the starting points. In both cases an interval arithmetic solver based on the

Bernstein subdivision method was used. After the starting points were found, the intervals

were transformed into floats and integrations were performed as previously presented.

This method guarantees that no roots will be missed. However its major drawback is

the extensive computational time required. The same equation could take as much as 20

times more of cpu time to solve in interval arithmetic than in floating point arithmetic.
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Examples and Applications -

Conclusions and

Recommendations

6.1 Introduction

To illustrate continuous surface decomposition, we used four different B-spline surfaces.

A wireframe representation of these surfaces is shown in Figs. (6-1) to (6-4). The knot

vectors and control points for these surfaces are given in Appendix C. Figure (6-1) shows a

sinusoidal surface which is a single bicubic Bezier patch. Figure (6-2) shows a surface which

is also a single bicubic Bezier patch. Figure (6-3) shows a hat-like surface which consists of

four bicubic Bezier patches, two in the u-direction and two in the v direction (2x2). Finally,

Fig. (6-4) shows a sinusoidal surface which consists of 49 (7x7) bicubic Bezier patches.

The results presented here involve the creation of color coded curvature maps for the

Gaussian, mean, maximum principal, minimum principal and root mean square curvatures,

and some information about the computational speed required, with particular attention to

the speed-up using parallel processing.
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6.2 Contours and Color Coded Curvature Maps

For each surface, we present here the Gaussian, mean, maximum principal, minimum prin-

cipal and root mean square curvatures. In each case, in addition to the color coded contour

maps, a schematic figure showing the starting points, the isoparametric subdivision and

the constant curvature contour lines, is presented. A table showing the stationary points

for the particular curvature is also included. Global maxima and minima in the tables are

shown with bold characters.

For the color coded curvature contour map, the following convention is applied: the

global minimum takes the color blue, the global maximum the color yellow and everything

in between is colored proportionally. The range of curvature is divided equally to a preset

number of increments.

Figures (6-5) to (6-9) and Tables (6.1) to (6.5) present the results for the single Bezier

patch sinusoidal surface shown in Fig. (6-1). The upper part of Fig. (6-5) presents the

constant Gaussian curvature contours. We can distinguish the two maxima that reside

within the domain. All stationary points are shown in Table (6.1). Isoparametric lines (at

constant u) pass through those maxima, dividing the surface into three regions. Since the

surface is a single Bezier patch, parallel processing is not needed for the computation of

the stationary and starting points. The integration however is done in parallel, assigning

different regions (in this case three) to different hosts. We can also identify the steep

curvature gradient at the two lower corners of the surface. This type of situation could lead

to complications, since starting points are very close to one another and could be considered

identical. Care is also taken regarding the selection of the integration step. Indeed, large

integration step will cause the program to fail while trying to connect two starting points

very close to each other. The lower part of Fig. (6-5) shows the color coded Gaussian

curvature maps. The large curvature gradient at the two lower corners is evident.

The upper part of Fig. (6-6) presents the constant mean curvature contours. Inside the

domain, this surface shows one maximum and one minimum which subdivide it into three
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regions for parallel processing during integration. All the stationary points for the mean

curvature for this surface are shown in Table (6.2). The lower part of Fig. (6-6) shows the

color coded contour map.

Figure (6-7) shows the curvature contours and the color coded curvature maps for the

maximum principal curvature. Table (6.3) presents all the stationary points for this case.

We can see that for the maximum principal curvature, the surface contains two extrema

within the domain and thus, two isoparameters divide the patch into three different regions.

The lower right corner presents a steep maximum principal curvature gradient. The global

maximum is located at the two lower corners.

Figure (6-8) shows the corresponding results for the minimum principal curvature. Table

(6.4) presents all the stationary points for this case. The observations that can be made

are very similar to the ones for the maximum principal curvature. This time the global

minimum is located at the two lower corners. Two extrema points can be found inside the

domain, subdividing the surface patch into three regions.

Figure (6-9) shows the corresponding results for the root mean square curvature. Table

(6.5) presents all the stationary points for this case. Three local extrema are distinguished,

one minimum (global) and two maxima. The global maximum is located at the two lower

corners. The results for this case were produced by using rounded interval arithmetic only.

The solver using floating point arithmetic kept loosing the global minimum at the middle,

due to numerical error as was previously discussed. The usefulness of rounded interval

arithmetic is evident.

Table (16.6) presents all the umbilical point for this surface. None of those umbilical

points is a maximum or a minimum according to the criterion in Appendix B.

Figure (6-2) shows a single Bezier patch surface developed for demonstration purposes.

Figures (6-10) to (6-14) show the curvature contours and color coded curvature maps for the

Gaussian, mean, maximum principal, minimum principal and root mean square curvatures

for that surface. Tables (6.7) to (6.11) present the stationary points for the same curvatures

for this surface. Figure (6-10) shows the constant Gaussian curvature contour lines. Table
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(6.7) presents all the stationary points for this case. We can distinguish the five extrema

as well as the isoparameters associated with them, subdividing the surface into six regions.

Each region will be treated as a task in parallel processing during the integration stage.

Note the importance of assigning the integration step to be proportional to the width (in

the u-direction) of each region, since in this example, the regions have wide ranges of widths.

The color coded curvature map for this curvature is shown on the lower part of Fig. (6-10).

Although the curvature range is not significant, several details can be noticed.

Figure (6-11) shows the results for the mean curvature. Table (6.2) presents all the sta-

tionary points for this case. There is only one minimum within the boundary, therefore the

surface is subdivided into two regions only. Again the curvature range is not considerable.

Figure (6-12) shows the results for the maximum principal curvature. Table (6.3)

presents all the stationary points for this case. We can distinguish three extrema points

within the domain, two minima (one of the global) and a maximum (global). Table (6.9)

presents all the stationary points in detail.

Figure (6-13) shows the results for the minimum principal curvature. Table (6.4)

presents all the stationary points for this case. A local maximum and a local minimum

exist within the boundary. The global minimum is located on the boundary u = 0 and the

global maximum on the two lower corners.

Figure (6-14) shows the results for the root mean square curvature. Table (6.11) presents

all the stationary points for this case. Three extrema exist within the boundary, one mini-

mum and two maxima. Both global minimum and maximum are located on the boundary.

The next two examples involve multipatch cases. Figure (6-3) shows a wireframe rep-

resentation of a hat-like surface. The surface is decomposable into four Bezier patches.

Figures (6-15) to (6-17) and Tables (6.12) to (6.14) show the results for the Gaussian,

mean and root mean square curvatures for this surface. The principal curvatures were not

computed for this case. The program was terminated after 24 hours of computing the sta-

tionary points (for each Bezier patch) on a 150 MHz workstation. The reason for the delay

is attributed to the characteristics of the surface, which is particularly flat at the center of
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the surface. This causes an excessive number of binary subdivisions leading to tremendous

memory requirements which can exhaust computer resources even if the requested accuracy

is not very strict.

In the upper part of Fig. (6-15) we can distinguish how the B-spline patch was subdivided

into four Bezier patches. The two black lines, at u = 0.5 and v = 0.5, subdivide the B-

spline into four Bezier patches. Finding the stationary and starting points can be performed

in parallel, with each Bezier patch sent to a different host. Table (6.12) presents all the

stationary points for the Gaussian curvature. The surface has a local (and, as it turns

out, global) maximum in the center, and four (identical) local (and global) minima. Three

isoparameters subdivide the original B-spline into four regions (red lines). Note that the

isoparameter u = 0.5 is identical to the Bezier patch subdivision line, and that in two cases,

one isoparameter line passes through two minima. Therefore, although we have five extrema

within the domain, only three isoparameter lines are needed to subdivide the surfaces to

four regions. Integration in the four different regions is performed in parallel. The lower

part of Fig. (6-15) shows the color coded Gaussian curvature map.

Figure (6-16) shows the results for the mean curvature. Table (6.13) presents all the

stationary points for this case. Similar observation with the results of the Gaussian cur-

vature can be made. The global maximum is located at the center of the surface. Again,

integration is performed in parallel on two different hosts. Note that although the lower

part of Fig. (6-16) indicates the existence of eight minima located on the boundary, only

four were found using the floating point arithmetic solver. Nevertheless, in this particular

case, the correct curvature map was developed, and this omission did not influence the final

result.

Figure (6-17) shows the results for the root mean square curvature. Table (6.14) presents

all the stationary points for this case. This surface is very rich in properties. Nine extrema

exist within its domain, although only five isoparameters u = const are needed to subdivide

it. Four are global maxima and four are global minima whereas the last one (in the middle)

is a local minimum. Twelve stationary points are found on the boundary.
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Figure (6-4) shows a more complicated sinusoidal surface. This surface is decomposable

into 49 B6zier patches, 7 in each direction. Figures (6-18) to (6-22) and Tables (6.15)

to (6.20) show the results for this specific case. The upper part of Fig. (6-18) shows the

constant Gaussian curvature contours. We can distinguish the subdivision boundaries of

the 49 B6zier patches. It can be noted that not all the patches are of the same size. This

surface is very rich in differential geometry properties, having six local minima and two

local maxima. Table (6.15) presents all the stationary points for this case. Five u = const.

isoparameter lines are needed. They subdivide the surface into six regions for parallel

integration. From the lower part of Fig. (6-18) we can see that although the range of the

curvature is large, on most of the surface the Gaussian curvature is around zero.

Figure (6-19) shows the corresponding results for the mean curvature. Table (6.16)

presents all the stationary points for this case. The mean curvature appears to be more

complicated than the Gaussian. Six extrema have been found: three minima and three

maxima. Three isoparameter lines divide the surface into four regions for parallel integra-

tion.

Figure (6-20) shows the corresponding results for the maximum principal curvature.

Table (6.17) presents all the stationary points found for this case. Note that Table (6.17)

does not contain the global minimum. This is due to the fact that the global minimum

was missed by the solver operating in floating point arithmetic. No interval arithmetic

calculation was performed for that surface. Nevertheless, the global minimum is very close

to the corner of one of the B6zier patches, whose curvature is automatically evaluated. In

that way, the full range of the curvature was captured, and the results shown in Fig. (6-

20) are accurate. Seven local maxima are found within the domain. Seven u = const

isoparameters subdivide the surface.

Figure (6-21) shows the corresponding results for the minimum principal curvature.

Table (6.18) presents all the stationary points found for this case. This time the global

maximum is missing, for exactly the same reason as above. The results are very similar

with the maximum principal curvature, but completely opposite.
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Figure (6-22) shows the corresponding results for the root mean square curvature. Sev-

eral extrema are found within the domain and on the boundary, see Tables (6.19) and (6.20).

The global maximum is located very close to the boundary, whereas the global minimum

in the center of the surface.
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u v Gaussian Curvature Classification
0.805 0.374 10.297 MAXIMUM
0.195 0.374 10.297 MAXIMUM
0.500 0.440 0.000 SADDLE
0.500 0.000 -20.250 M I N I M U M
0.500 1.000 -7.290 MINIMUM
0.000 0.440 0.000 MAXIMUM
1.000 0.440 0.000 MAXIMUM
0.789 0.000 0.000 MAXIMUM
0.211 0.000 0.000 MAXIMUM
0.789 1.000 0.000 MAXIMUM
0.211 1.000 0.000 MAXIMUM

0.000 0.000 -81.000 MINIMUM
1.000 0.000 -81.000 MINIMUM

Table 6.1: Stationary Points - Gaussian Curvature - Sinusoidal Surface - 1 Bezier Patch

Mean Curvature - Sinusoidal Surface - 1 Bezier Patch

u v Mean Curvature Classification
0.810 0.414 -4.056 MINIMUM
0.190 0.414 4.056 MAXIMUM
0.000 0.440 0.607 MINIMUM
1.000 0.861 -1.155 MINIMUM
1.000 0.089 -1.155 MINIMUM
0.884 0.000 -0.539 MINIMUM
0.681 0.000 -0.539 MINIMUM
0.211 0.000 0.524 MINIMUM
0.789 1.000 -0.121 MINIMUM
0.000 0.861 1.155 MAXIMUM
0.000 0.089 1.155 MAXIMUM
1.000 0.440 -0.607 MAXIMUM
0.789 0.000 -0.524 MAXIMUM
0.319 0.000 0.539 MAXIMUM
0.116 0.000 0.539 MAXIMUM
0.211 1.000 0.121 MAXIMUM

Table 6.2: Stationary Points -
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Table 6.3: Stationary Points
Patch

- Maximum Principal Curvature - Sinusoidal Surface - 1 Bezier

u v Max. Principal Curvature Classification
0.789 0.303 -1.665 MINIMUM
0.187 0.440 6.607 MAXIMUM
0.378 0.851 2.470 SADDLE
0.082 0.802 4.504 SADDLE
0.321 0.157 3.276 SADDLE
0.114 0.184 5.127 SADDLE
0.211 0.000 1.047 MINIMUM
0.211 1.000 0.242 MINIMUM
0.789 0.000 0.000 MINIMUM
0.789 1.000 0.000 MINIMUM
0.478 0.000 4.569 MAXIMUM
0.491 1.000 2.704 MAXIMUM
0.000 0.043 7.952 MAXIMUM
0.000 0.908 5.232 MAXIMUM

0.000 1 0.000 9.000 MAXIMUM
1.000 0.000 9.000 MAXIMUM
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Table 6.4: Stationary Points
Patch

- Minimum Principal Curvature - Sinusoidal Surface - 1 Bezier

u v Min. Principal Curvature Classification
0.813 0.440 -6.607 MINIMUM
0.211 0.303 1.665 MAXIMUM
0.918 0.802 -4.504 SADDLE
0.622 0.851 -2.470 SADDLE
0.886 0.184 -5.127 SADDLE
0.679 0.157 -3.276 SADDLE
0.509 1.000 -2.704 MINIMUM
0.522 0.000 -4.569 MINIMUM
1.000 0.043 -7.952 MINIMUM
1.000 0.908 -5.232 MINIMUM
0.211 0.000 0.000 MAXIMUM
0.211 1.000 0.000 MAXIMUM
0.789 0.000 -1.047 MAXIMUM
0.789 1.000 -0.242 MAXI M U M

0.000 0.000 -9.000 MINIMUM
1.000 0.000 -9.000 MINIMUM
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Table 6.5: Stationary Points - RMS Curvature - Sinusoidal Surface - 1 Bezier Patch

u v Max. & Min. Principal Curvature Classification
0.789 0.984 -0.267 UMBILIC
0.789 0.052 -1.197 U MBILIC
0.500 0.440 0.000 UMBILIC
0.211 0.984 0.267 UMBILIC
0.211 0.052 1.197 UMBILIC

Table 6.6: Umbilical Points - Sinusoidal Surface - 1 Bezier Patch

u v K"ms Curvature Classification
0.500 0.500 0.000 M INIMUM
0.188 0.433 6.771 MAXIMUM
0.812 0.433 6.771 MAXIMUM
0.086 0.794 4.515 SADDLE
0.110 0.176 5.159 SADDLE
0.325 0.150 3.282 S A D D L E
0.351 0.812 2.552 S A D D L E
0.649 0.812 2.552 S A D D L E
0.675 0.150 3.282 S A D D L E
0.890 0.176 5.159 S A D D L E
0.914 0.794 4.515 SADDLE
0.000 0.440 1.213 MINIMUM
0.211 0.000 1.047 MINIMUM
0.211 1.000 0.242 MINIMUM
0.789 0.000 1.047 MINIMUM
0.789 1.000 0.242 MINIMUM
1.000 0.440 1.213 MINIMUM

0.000 0.000 12.728 MAXIMUM
1.000 0.000 12.728 M A XI MU M
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u v Gaussian Curvature Classification
0.770 0.404 -0.115 MINIMUM
0.132 0.950 -0.098 MIN IMUM
0.324 0.032 -0.086 MINI M UM
0.618 0.098 0.098 MAXIMUM
0.351 0.417 0.038 MAXIMUM
0.516 0.746 -0.050 SADDLE
0.429 0.348 0.035 SADDLE
0.000 0.944 -0.094 MINIMUM
0.000 0.039 -0.015 M INIMU M
1.000 0.385 -0.052 MINIMUM
0.975 0.000 -0.008 MINIMUM
0.326 0.000 -0.085 MINIMUM
0.145 1.000 -0.096 MIN IMUM
0.000 0.377 -0.011 MAXIMU M
0.644 0.000 0.085 MAXIMUM
0.899 1.000 -0.016 MAXIMUM

Table 6.7: Stationary Points - Gaussian Curvature - 1 Bezier Patch

u v Mean Curvature Classification
0.596 0.042 -0.476 MINIMUM
0.940 0.979 -0.058 SADDLE
0.319 0.719 -0.036 SADDLE
0.466 0.211 -0.450 SADDLE
0.000 0.449 -0.678 MINIMUM
1.000 0.955 -0.061 MINIMUM
0.607 0.000 -0.473 MINI M UM
0.507 1.000 -0.216 MINIMUM
1.000 0.256 0.165 MAXIMUM
0.009 0.000 0.019 MAXIMUM
0.948 1.000 -0.057 MAXIMUM

Table 6.8: Stationary Points - Mean Curvature - 1 Bezier Patch



Chapter 6. Examples and Applications - Conclusions and Recommendations

u v Max. Principal Curvature Classification
0.811 0.437 0.497 MAXIMUM
0.634 0.134 -0.130 MINIMUM
0.430 0.717 0.179 SADDLE
0.465 0.355 -0.056 SADDLE
0.465 0.354 -0.056 SADDLE
0.464 0.356 -0.056 SADDLE
0.464 0.355 -0.056 SADDLE
0.396 0.516 -0.108 UMBILIC
0.000 0.584 0.021 MINIMUM
0.000 0.334 0.011 MINIMUM
0.670 0.000 -0.106 MINIMUM
0.670 1.000 0.068 MINIMUM
1.000 0.969 0.088 MINIMUM
0.000 0.986 0.320 MAXIMUM
0.223 0.000 0.228 MAXIMUM
1.000 0.197 0.414 MAXIMUM

Table 6.9: Stationary Points - Maximum Principal Curvature - 1 B6zier Patch

u v Min. Principal Curvature Classification
0.583 0.019 -0.859 MINIMUM
0.396 0.517 -0.109 MAXIMUM
0.910 0.885 -0.209 SADDLE
0.657 0.568 -0.211 SADDLE
0.527 0.112 -0.853 SADDLE
0.086 0.855 -0.312 SADDLE
0.000 0.426 -1.346 MINIMUM
0.482 1.000 -0.524 MINIMUM
0.589 0.000 -0.858 M INIMUM
1.000 0.780 -0.197 MINIMUM
0.000 0.884 -0.310 MAXIMUM
0.937 1.000 -0.197 MAXIM UM
1.000 0.000 -0.042 MAXIMUMI[

Table 6.10: Stationary Points - Minimum Principal Curvature - 1 Bezier Patch



Chapter 6. Examples and Applications - Conclusions and Recommendations

u v Krms Curvature Classification
0.411 0.533 0.123 MINIMUM
0.585 0.022 0.863 MAXIMUM
0.794 0.433 0.544 MAXIMUM
0.522 0.121 0.855 SADDLE
0.583 0.715 0.331 SADDLE
0.703 0.263 0.350 SADDLE
0.000 0.781 0.401 MINIMUM
0.000 0.039 0.175 MINIMUM
0.928 0.000 0.115 MINIMUM
0.932 1.000 0.214 MINIMUM
0.000 0.948 0.434 MAXIMUM
0.000 0.449 1.364 MAXIMUM
0.475 1.000 0.533 MAXIMUM
0.592 0.000 0.862 MAXIMUM
1.000 0.323 0.454 MAXIMUM

Table 6.11: Stationary Points - RMS Curvature - 1 Bezier Patch

Hat-like Surface - Gaussian Curvature - 4 Bezier Patches

u v Gaussian Curvature Classification
0.143 0.143 -15.157 M INIMUM
0.143 0.857 -15.157 MINIMUM
0.857 0.143 -15.157 MINIMUM
0.857 0.857 -15.157 MINIMUM
0.500 0.500 2.250 MAXIMUM
0.000 0.787 -8.818 MINIMUM
0.787 0.000 -8.818 MINIMUM
1.000 0.787 -8.818 MINIMUM
0.787 1.000 -8.818 MINIMUM
0.000 0.500 -1.843 MAXIMUM
0.500 0.000 -1.843 MAXIMUM
0.500 1.000 -1.843 MAXIMUM
1.000 0.500 -1.843 MAXIMUM

Table 6.12: Stationary Points -
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Table 6.13: Stationary Points - Hat-like Surface - Mean Curvature - 4 Bezier Patches

u v Mean Curvature Classification
0.500 0.500 1.500 MAXIMUM
0.152 0.152 -0.404 SADDLE
0.152 0.848 -0.404 SADDLE
0.848 0.152 -0.404 SADDLE
0.848 0.848 -0.404 SADDLE
0.000 0.688 -1.103 MINIMUM
0.688 0.000 -1.103 MINIMUM
1.000 0.688 -1.103 MINIMUM
0.688 1.000 -1.103 MINIMU M
0.000 0.500 -0.816 MAXIMUM
0.500 0.000 -0.816 MAXIMUM
0.500 1.000 -0.816 MAXI M UM
1.000 0.500 -0.816 MAXIMUM
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u v Krms Curvature Classification
0.189 0.500 1.138 MINIMUM
0.500 0.189 1.138 MINIMUM
0.500 0.811 1.138 MINIMUM
0.811 0.500 1.138 MINIMUM
0.500 0.500 2.121 MINIMUM
0.144 0.144 5.561 MAXIMUM
0.144 0.856 5.561 MAXIMUM
0.856 0.144 5.561 MAXIMUM
0.856 0.856 5.561 MAXIMUM
0.371 0.371 1.845 SADDLE
0.371 0.629 1.845 SADDLE
0.629 0.371 1.845 SADDLE
0.629 0.629 1.845 SADDLE
0.000 0.500 2.520 MINIMUM
0.500 0.000 2.520 MINIMUM
0.500 1.000 2.520 MINIMUM
1.000 0.500 2.520 MINIMUM
0.000 0.247 4.502 MAXIMUM
0.000 0.753 4.502 MAXIMUM
0.247 0.000 4.502 MAXIMUM
0.247 1.000 4.502 MAXIMUM
0.753 0.000 4.502 MAXIMUM
0.753 1.000 4.502 MAXIMUM
1.000 0.247 4.502 MAXIMUM
1.000 0.753 4.502 MAXIMUM

Hat-like Surface - RMS Curvature - 4 Bezier PatchesTable 6.14: Stationary Points -
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u v Gaussian Curvature Classification
0.172 0.500 -76.141 MINIMUM
0.241 0.007 -163.018 M I N I M U M
0.241 0.993 -163.018 MINIMUM
0.759 0.007 -163.018 MINIMUM
0.759 0.993 -163.018 MINIMUM
0.828 0.500 -76.141 M I N I M U M
0.500 0.180 47.763 MAXIMU M
0.500 0.820 47.763 MAX IMU M
0.156 0.155 -1.521 SADDLE
0.158 0.257 -1.544 SADDLE
0.158 0.743 -1.544 SADDLE
0.156 0.845 -1.521 SADDLE
0.500 0.500 0.000 SADDLE
0.844 0.155 -1.521 SADDLE
0.842 0.257 -1.544 SADDLE
0.842 0.743 -1.544 SADDLE
0.844 0.845 -1.521 SADDLE
0.000 0.086 -0.521 MINIMUM
0.000 0.914 -0.521 MINIMUM
0.000 0.500 -3.092 MINIMUM
0.248 0.000 -156.371 M I N I M U M
0.248 1.000 -156.371 MINIMUM
0.752 0.000 -156.371 M I N I M U M
0.752 1.000 -156.371 M I N I M U M
1.000 0.086 -0.521 MINIMUM
1.000 0.500 -3.092 MINIMUM
1.000 0.914 -0.521 MINIMUM
0.000 0.166 -0.125 MAXIMUM
0.000 0.834 -0.125 MAXIMUM
0.500 0.000 -0.090 MAXIMUM
0.500 1.000 -0.090 MAXIMUM
1.000 0.166 -0.125 MAXIMUM
1.000 0.834 -0.125 MAXIMUM

Table 6.15: Stationary Points - Sinusoidal Surface - Gaussian Curvature - 49 Bezier Patches
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u v Mean Curvature Classification
0.063 0.363 -2.742 M INIMUM
0.500 0.823 -7.307 MINIMUM
0.937 0.363 -2.742 MINIMUM
0.063 0.637 2.742 MAXIMUM
0.500 0.177 7.307 MAXIMUM
0.937 0.637 2.742 MAXIMUM
0.165 0.030 -4.061 SADDLE
0.165 0.970 4.061 SADDL E
0.155 0.500 0.000 SADDLE
0.835 0.030 -4.061 SADDL E
0.835 0.970 4.061 SADDLE
0.845 0.500 0.000 SADDL E
0.000 0.140 -5.322 MINIMUM
0.000 0.334 -2.473 MINIMUM
0.000 0.735 2.106 MINIMUM
0.063 1.000 -0.249 MINIMUM
0.259 0.000 -5.804 MINIMUM
0.500 1.000 -0.119 MINI M UM
0.741 0.000 -5.804 MINIMUM
1.000 0.140 -5.322 MINIMUM
1.000 0.334 -2.473 MINIMUM
1.000 0.735 2.106 MINIMUM
0.937 1.000 -0.249 MINIMUM
0.063 0.000 0.249 MAXIMUM
0.000 0.265 -2.106 MAXIMUM
0.000 0.666 2.473 MAXIMUM
0.000 0.860 5.322 MAXIMUM
0.259 1.000 5.804 MAXIMUM
0.500 0.000 0.119 MAXIMUM
0.741 1.000 5.804 MAXIMUM
0.937 0.000 0.249 MAXIMUM
1.000 0.265 -2.106 MAXIMUM
1.000 0.666 2.473 MAXIMUM
1.000 0.860 5.322 MAXIMUM

Table 6.16: Stationary Points - Sinusoidal Surface - Mean Curvature - 49 Bezier Patches
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u v Max. Principal Curvature Classification
0.111 0.605 6.806 MAXIMUM
0.181 0.486 8.812 MAXIMUM
0.234 0.011 8.609 MAXIMUM
0.500 0.174 9.720 MAXIMUM
0.766 0.011 8.609 MAXIMUM
0.819 0.486 8.812 MAXIMUM
0.889 0.605 6.806 MAXIMUM
0.047 0.904 9.642 SADDLE
0.197 0.214 0.731 SADDLE
0.305 0.060 6.594 SADDLE
0.354 0.354 4.982 SADDLE
0.418 0.283 5.273 SADDLE
0.500 0.799 -5.080 SADDLE
0.582 0.283 5.273 SADDLE
0.646 0.354 4.982 SADDLE
0.695 0.060 6.594 SADDLE
0.803 0.215 0.731 SADDLE
0.953 0.904 9.642 SADDLE
0.000 0.701 4.843 MINIMUM
0.500 0.000 0.442 MINIMUM
0.500 1.000 0.204 MINIMUM
1.000 0.701 4.843 MINIMUM
0.000 0.875 10.311 MAXIMUM
0.254 1.000 19.517 MAXIMUM
0.746 1.000 19.517 MAXIMU M
1.000 0.875 10.311 MAXIMUM

0.373 0.203 1.849 UMBILIC
0.373 0.797 -1.849 UMBILIC
0.500 0.072 1.994 UMBILIC
0.500 0.247 4.661 UMBILIC
0.500 0.500 0.000 UMBILIC
0.500 0.753 -4.661 UMBILIC
0.500 0.970 -0.815 UMBILIC
0.627 0.203 1.848 UMBILIC
0.627 0.797 -1.848 UMBILIC

Table 6.17: Stationary Points - Sinusoidal Surface - Max. Principal Curvature - 49 B6zier
Patches
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u v Min. Principal Curvature Classification
0.111 0.395 -6.806 MINIMUM
0.181 0.514 -8.812 MINIMUM
0.234 0.989 -8.609 MINIMUM
0.500 0.826 -9.720 MINIMUM
0.766 0.989 -8.609 MINIMUM
0.819 0.514 -8.812 MINIMUM
0.889 0.395 -6.806 MINIMUM
0.047 0.096 -9.642 SADDLE
0.197 0.786 -0.731 SADDLE
0.305 0.940 -6.594 SADDLE
0.354 0.646 -4.982 SADDLE
0.418 0.717 -5.273 SADDLE
0.500 0.201 5.080 SADDLE
0.582 0.717 -5.273 SADDLE
0.646 0.646 -4.982 SADDLE
0.695 0.940 -6.594 SADDLE
0.803 0.786 -0.731 SADDLE
0.953 0.096 -9.642 SADDLE
0.000 0.125 -10.311 M I N I M U M
0.254 0.000 -19.517 MINIMUM
0.746 0.000 -19.517 MINIMUM
1.000 0.125 -10.311 M I N I M U M
0.000 0.299 -4.843 MAXIMU M
0.500 0.000 -0.204 MAXIMUM
0.500 1.000 -0.442 MAXIMUM
1.000 0.299 -4.843 MAXIMUM

0.373 0.203 1.849 UMBILIC
0.373 0.797 -1.849 UMBILIC
0.500 0.072 1.994 U MBILIC
0.500 0.247 4.661 UMBILIC
0.500 0.500 0.000 UMBILIC
0.500 0.753 -4.661 UMBILIC
0.500 0.970 -0.815 UMBILIC
0.627 0.203 1.848 UMBILIC
0.627 0.797 -1.848 UMBILIC

Table 6.18: Stationary Points
Patches

- Sinusoidal Surface - Min. Principal Curvature - 49 Bezier
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u

0.279
0.286
0.286
0.279
0.572
0.572
0.572
0.844
0.837
0.837
0.844
0.172
0.261
0.261
0.572
0.572
0.862
0.862
0.828
0.046
0.046
0.391
0.368
0.368
0.391
0.486
0.358
0.358
0.486
0.653
0.781
0.781
0.653
0.732
0.755
0.755
0.732
0.954
0.954

Classificationv

0.171
0.291
0.810
0.829
0.002
0.536
0.998
0.171
0.291
0.810
0.829
0.536
0.002
0.998
0.176
0.824
0.002
0.998
0.536
0.096
0.904
0.070
0.257
0.845
0.930
0.386
0.380
0.703
0.716
0.386
0.380
0.703
0.716
0.070
0.257
0.845
0.930
0.096
0.904

Table 6.19: Stationary Points - Sinusoidal Surface - RMS Curvature -

Krms Curvature
0.978
1.416
1.416
0.978
0.477
0.000
0.477
0.978
1.416
1.416
0.978
12.340
21.120
21.120
10.877
10.877
21.120
21.120
12.340
9.646
9.646
6.741
1.443
1.443
6.741
5.443
4.987
4.987
5.443
5.443
4.987
4.987
5.443
6.741
1.443
1.443
6.741
9.646
9.646

MINIMUM
MINIMUM
MINIMUM
MINIMUM
MINIMUM

MINIMUM
MINIMUM
MINIMUM
MINIMUM
MINIMUM
MINIMUM
MAXIMUM
MAXIMUM
MAXIMUM
MAXIMUM
MAXIMUM

MAXIMUM
MAXIMUM
MAXIMUM

SADDLE
SADDLE
SADDLE
SADDLE
SADDLE
SADDLE
SADDLE
SADDLE
SADDLE
SADDLE
SADDLE
SADDLE
SADDLE
SADDLE
SADDLE
SADDLE
SADDLE
SADDLE
SADDLE
SADDLE

49 Bezier Patches
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Table 6.20: Stationary Points - Sinusoidal Surface -
(Continue)

RMS Curvature - 49 B6zier Patches

u v Krms Curvature Classification
0.000 0.002 0.745 MINIMUM
0.000 0.313 4.439 MINIMUM
0.000 0.536 2.487 MINIMUM
0.000 0.789 4.439 MINIMUM
0.000 0.998 0.745 MINIMUM
0.572 0.000 0.486 MINIMUM
0.572 1.000 0.486 MINIMUM
1.000 0.002 0.745 MINIMUM
1.000 0.313 4.439 MINIMUM
1.000 0.536 2.487 MINIMUM
1.000 0.789 4.439 MINIMUM
1.000 0.998 0.745 MINIMUM
0.000 0.139 10.667 MAXIMUM
0.000 0.355 5.396 MAXIMUM
0.000 0.728 5.396 MAXIMUM
0.000 0.861 10.667 MAXIMUM
0.269 0.000 21.080 MAXIMUM
0.269 1.000 21.080 MAXIMUM
0.854 0.000 21.080 MAXIMUM
0.854 1.000 21.080 MAXIMUM
1.000 0.139 10.667 MAXIMU M
1.000 0.355 5.396 MAXIMUM
1.000 0.728 5.396 MAXIMUM
1.000 0.861 10.667 MAXIMUM
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z

Figure 6-1: Sinusoidal Surface - 1 B6zier Patch

Figure 6-2: Random Data Surface - 1 Bezier Patch
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Figure 6-3: Hat-like Surface - 2 x 2 B6zier Patches

Figure 6-4: Sinusoidal Surface 7 x 7 Bezier Patches
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Figure 6-5: Sinusoidal Surface (1 Bezier Patch) - Gaussian Curvature
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Figure 6-6: Sinusoidal Surface (1 B4zier Patch) - Mean Curvature
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Figure 6-7: Sinusoidal Surface (1 B4zier Patch) - Maximum Principal Curvature
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Figure 6-8: Sinusoidal Surface (1 Bezier Patch) - Minimum Principal Curvature
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Figure 6-9: Sinusoidal Surface (1 Bezier Patch) - R M S Curvature
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Figure 6-10: Data Surface (1 Bezier Patch) - Gaussian Curvature
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Figure 6-11: Data Surface (1 Bezier Patch) - Mean Curvature
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Figure 6-12: Data Surface (1 B6zier Patch) - Maximum Principal Curvature
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Figure 6-13: Data Surface (1 Bezier Patch) - Minimum Principal Curvature
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Figure 6-14: Data Surface (1 Bezier Patch) - R M S Curvature
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Figure 6-15: Hat-like Surface (2 x 2 Bezier Patch) - Gaussian Curvature
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Figure 6-16: Hat-like Surface (2 x 2 Bezier Patch) - Mean Curvature
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Figure 6-17: Hat-like Surface (2 x 2 Bezier Patch) - R M S Curvature
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Figure 6-18: Sinusoidal Surface (7 x 7 Bezier Patch) - Gaussian Curvature
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Figure 6-19: Sinusoidal Surface (7 x 7 B'zier Patch) - Mean Curvature
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Figure 6-20: Sinusoidal Surface (7 x 7 Bdzier Patch) - Max Principal Curvature
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Figure 6-21: Sinusoidal Surface (7 x 7 B6zier Patch) - Min Principal Curvature
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Figure 6-22: Sinusoidal Surface (7 x 7 Bezier Patch) - R M S Curvature
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6.3 Parallel Processing and Performance Benchmarks

In order to develop the color coded curvature maps mentioned above, extensive computa-

tion is required. In this section, we examine the influence of parallel processing, on the

computational time required for the process to take place.

All the runs of the program took place in the MIT Ocean Engineering Design Labo-

ratory which is equipped with six Silicon Graphics workstations. Table (6.21) lists all the

computers available in the Design Laboratory, along with their major characteristics.

It is customary to evaluate the performance of parallel processing by examining the

computational time required as a function of the number of equivalent processors involved

[4]. Nevertheless, because of the wide range of performances that the available host proces-

sors possess, it is not possible to do so. The reason for this is that while running a process

in parallel on a very fast computer with a very slow machine, long idle time on the fast

computer (while it is waiting for the slow one to finish) will appear. The situation worsens

as the number of total tasks decreases. In order to overcome this problem, a number of

possible computer configurations were created. Table (6.22) describes the different cases

we tried. On the top of the list is what we would expect to be the slowest process (Fireb

running by itself) and on the bottom of the list what we would expect to be the fastest

(all the machines running in parallel). Note that Fireb and Famly are identical machines,

therefore, we can compare computational time as a function of available processors. Note

Name Type CPU RAM (MB) Clock Speed (MHz)
fornix Iris ONYX2-RE2 MIPS R4400 (2) 64 150
deslab Iris 4DRPC50 MIPS R4000 32 100
fucus Iris INDY-SC MIPS R4000 16 100
fetus Iris 4DRPC MIPS R3000 80 33
fireb Iris 4D35TG MIPS R3000 16 36
famly Iris 4D35TG MIPS R3000 16 36

Table 6.21: Design Lab Computers
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Number of Case

1
2
3
4,
5
6
7
8
9
10

Hosts

Fireb
Fireb + Famly
Deslab
Fornix
Deslab + Fucus
Deslab + Fornix
Deslab + Fornix + Fucus
Deslab + Fornix + Fucus + Fetus
Deslab + Fornix + Fucus + Fetus + Famly
Deslab + Fornix + Fucus + Fetus + Famly + Fireb

Table 6.22: Possible Configurations for Parallel Processing Testing

also that although Fornix is the fastest available machine, the master process usually runs

on Deslab. This is due to the fact that Fornix, the newest computer in the Laboratory,

currently has some software incompatibility with the others and is unable to initiate the

PVM Daemons on other machines. When this problem is overcome, final computational

time will be even smaller.

Table (6.23) shows the total computational time it takes to complete the computations

involving the Gaussian and mean curvatures of the 2x2 Hat-like surface and the 7x7 Si-

nusoidal surface on the different configuration cases presented in Table (6.22). The data

are presented only for the multipatch surfaces mentioned above, since these are the ones

pa~rallel processing is intended for. Note that for the Hat-like surface, cases 9 and 10 are

inapplicable since the number of B6zier patches in that surface are four and this is the

maximum number of hosts that could be used.

These results are also presented graphically in Figs. (6-23) to (6-26). We can make

several observations concerning the efficiency of parallel programming, from these figures

and table (6.23).

Figures (6-23) and (6-24) present computational time for the Hat-like surface which is
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Number Total Computational Time (sec)
of 2x2 Hat-like Surface 7x7 Sinusoidal Surface

Case Gaussian Mean Gaussian Mean
1 440 671 847 1321
2 315 425 562 979
3 244 362 505 839
4 120 169 298 460
5 208 221 299 550
6 153 194 234 360
7 159 152 181 301
8 146 219 173 286
9 n/a n/a 180 281
10 n/a n/a 179 250

Ratio 3.01 4.41 4.90 5.29

Table 6.23: Total Computational Time for Gaussian and Mean Curvatures

decomposable into four Bezier patches, and thus 4 PVM processes. The low number of

processes makes the efficiency of parallel programming moderately low. We can definitely

see a decreasing trend as we go from case 1 to case 8. There is one major observations to

be made. Because of the size of the problem, case 4 (Fornix running by itself) can achieve

equal or better results than any other combination. Indeed, the addition of other machines

effectively delays the program. This effect could have been reduced if the master process for

cases 5 and above, was running on Fornix. Nevertheless, the parallel programming efficiency

is apparent when examining cases 1 and 2 (involving identical computers).

Figures (6-25) and (6-26) present computational time for the sinusoidal surface, which

is decomposable into 49 Bezier patches. It is evident that the larger the size of the problem,

the more efficient parallel processing is. Case 4 behaves more evenly in the case of the 49

patch problem. The last line of Table (6.23) shows the ratio of the largest to the smallest

computational time for each problem. We can see that the ratio increases from the simplest

(Gaussian curvature) and smallest (2x2 case) to the more complex (mean curvature) and

larger (7x7 case) problem.
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Figure 6-23: Parallel Programming - 2x2 Hat-like Surface, Gaussian Curvature
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Figure 6-24: Parallel Programming -



Chapter 6. Examples and Applications - Conclusions and Recommendations

Case

Figure 6-25: Parallel Programming - 7x7 Sinusoidal Surface, Gaussian Curvature
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Figure 6-26: Parallel Programming -
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6.4 Conclusions and Recommendations

In this section we review the contribution of this thesis, and conclude and recommend topics

for further investigation.

We have developed a robust tool to accurately interrogate complex non-uniform (inte-

gral) B-spline surfaces. Given any such B-spline surface, the methodology developed allows

for the development of constant curvature contour maps for the Gaussian, mean, maximum

principal, minimum principal and root mean square curvature. Important features of this

methodology include:

* The use of both floating point arithmetic and rounded interval arithmetic for the

formulation of the governing equations.

* The implementation of rounded interval arithmetic to the nonlinear polynomial equa-

tion solver, based on the Bernstein subdivision method.

* The subdivision of the B-spline surface into several Bezier patches. This allowed

for more computational efficiency, since we were able to readily formulate and solve

nonlinear polynomial systems of equations. It also allows the subdivision of a large

problem into several smaller subproblems.

* The use of parallel processing to distribute the small subproblems to different proces-

sors, leading to great computational time efficiency.

* The implementation of the whole methodology in C++ allowing for easy modification

and addition of features.

Major observations that can be made from using this methodology include:

* Floating point arithmetic is adequate for only about 95% of the cases examined. It

could lead to wrong results if the nonlinear solver misses a root of the system of

polynomials that govern the interrogation problem.
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* Interval arithmetic guarantees a correct solution.

* The implementation using interval arithmetic is substantially slower than the cor-

responding using floating point arithmetic, by a factor that can reach the value of

40.

* Parallel processing substantially reduces the total computational time, when all pro-

cessors involved have similar speed. Around 98% of the computation is performed in

parallel.

* Large variations of speeds of the processors used might have a negative influence on

the parallel processing speed-up.

* The existence of square roots in the governing equations and thus the implementation

of the auxiliary variable method, increase the computational time. Curvature maps

for Gaussian, mean and root mean square curvatures are computed faster than the

corresponding ones for principal curvatures.

Considering the above, recommendations for future investigations are:

* Interval arithmetic should be used on complex surfaces with no indication of what the

curvature range might be.

* When using floating point arithmetic, an approximate method of estimating the pos-

sible range of the curvature, before the actual computation is performed, is needed so

as to check possible misses of the solver. This method may be the evaluation of the

particular curvature on points of a dense grid, and the extraction of an approximate

maximum and minimum.

* Global methods for computing the roots of nonlinear polynomial equations do not

need initial approximations and when coupled with rounded interval arithmetic are

robust, but slow. A combination of this method, with low required accuracy, that
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will efficiently yield a good first approximation of all roots, with an interval Newton

method for root refining in order to accelerate convergence, should be investigated.

* The implementation of a truly variable step integration method for contour tracing

is needed, so that the program automatically varies the integration step according to

the location of the starting points and the particular value of the curvature at any

point.



Appendix A

Formulas for Curvature Partial

Derivatives

The following is adapted from Maekawa, [18].

Surface normal

S = r, x rv (A.1)

SU = rTu x rv + ru x ruI Sv = ruv x rv + ru x rx (A.2)

SuU = ru~ x r~ + 2ruu x rxv + ru x rx (A.3)

SUV = r2uu x rv + ruu x rvv + ru x ruvv (A.4)

S,, = ru,, x r, + 2ru, x r~, + ru x rvv, (A.5)

Scalar magnitude of surface normal

S= Iru x rI = det[] = /EG- F 2  (A.6)

S - S, S S,S_ ,s S, s (A.7)
S S
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S .su + S S, - (A.8)cSu = (A.8)
S

S S.S, + S•,.s, - SS,)SU, = S (A.9)
S

S -.S,, + sv Sv - S(A.S& = S (A.10)

The coefficients of first fundamental form

E = r~ . ru (A.11)

Eu = 2r* " ru, E = 2ru *-ruv (A.12)

EZ. = 2(rsu ruu + r- .r•u) (A.13)

Eu = 2(ru, ru + ru ru,,) (A.14)

E,V = 2(ru, . r, + r, r,,) (A.15)

F = ru - r, (A.16)

F = ruu rv + ru ruv, Fv = ruv, rv + ru rvv (A.17)

FuU = ru . r, + 2ru , ruv + r. ruuv (A.18)

Fu = ruuv r, + ruu ,rvv + ruv .ruv + ru r uv (A.19)

FvV = ruv• rv + 2rv .. rv, + ru- rvv (A.20)

G = r - r, (A.21)

G= 2rv'r r, G =2rv rv (A.22)

GU = 2(rl r~, + rV ruUV) (A.23)

Guy = 2(rvv ruv + r ruvv) (A.24)

Gvv = 2(rvv rvv + rv rvvv) (A.25)



The coefficients of second fundamental form multiplied by S

L = SL = S r,, (A.26)

LU= Suruu + S ruu, LV,= Sv, r + S r,,v (A.27)

LUU = S, ru + 2Su, r,,u + S • ru•u (A.28)

Lu, = Suv ruu + Su , ruv, + Sv, ruuu + S ruuuv (A.29)

LVV = Svv ru + 2S, . ruuv + S r.uvv (A.30)

M = SM = S -rv (A.31)

M = Sur, r + S r,,, IM= SMS, r + S r,, (A.32)

MT, = S, rv + 2S, - ru,, + S ru,, (A.33)

M•, = Sv, rv + Su, ru, + Sv, ru, + S r,,, (A.34)

M•, = S,, ru, + 2S, rv,, + S r,,, (A.35)

N = SN = S - rv, (A.36)

N, = S.* r, + S rvv, Nv = Sv *rv, + S r,,, (A.37)

Nu, = S, rv, + 2S, . ru,, + S r,,, (A.38)

NuS = Su. rvv + Su . rvv, + Sv. ruvv + S ruvv (A.39)

Nvv = Svv rvv + 2Sv ' rvvv + S rvvvv (A.40)

The determinant of second fundamental matrix multiplied by S 2

A = LN - M 2  (A.41)

AU = LuN + LNu - 2IMM1, Av = LZ, + LN, - 22MMv (A.42)
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Au, = iLuN + iLV, + 2(LN, - k! 22- •1~ u) (A.43)

AV, = LN + LuN, + LN~, + LNS, - 2(MflMI + Iffuv,) (A.44)

A,, = LvN + LNV, + 2(L~N, - ,2 - r,,) (A.45)

The numerator of the mean curvature, equation (3.20) multiplied by S

B = 2F~ - EN - GL (A.46)

Bi, = 2(FM2 + FuM) - (E,• + ENu) - (GuL + GLu) (A.47)

B, = 2(FM/ + FvM) - (ENV + EN,) - (GL + GL~) (A.48)

Bu = 2(FMUlu + 2FuM + FuuM) - (EuuN + 2EIN + EN,,)

- (GuuL + 2GuLu + GLU,) (A.49)

B,, = 2(FM•, + FvM + FuiM, + F,,IM) - (Eu,,vN + EuN + EvN + E Nu,)

-(Gu,L + GiL + Gi, + GLuv) (A.50)

B,, = 2(FMf1 , + 2Fv M, + Fv,,v) - (E,,vN + 2E,vN + EvN,)

-(G,,L + 2GL, + GL,,) (A.51)

The Gaussian curvature

det[A] LN - M 2  LŽN - M12  A
det[r] EG - F2  S4  S4

SAuS 2 - 4(S " Su)A A
= 6 = (A.53)S6 S6

AS 2 - 4(S )A S)A (A.54)
K=$ (A.54)S 6  S6

= AS 2 - 6(S -Su)AKt = Sz (A.55)S8

as2 - 6(S .S,)AK = S 2 6(S (A.56)

AS 2 - 6(S . S,)AK,, = 6(S ) (A.57)
S 8
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where

A = A,S 2 - 4(S -S,)A

A, = A,,S 2 - 2A,(S - S,) - 4(S, - S, + S -S u)A

A, = A ,S 2 + 2A,(S - S,) - 4(S, u S, + S- S,,)A - 4(S - S,)A,

A = AVS 2 - 4(S -Sv)A

A, = A,,S 2 - 2Av(S Sv) - 4(Sv, S, + S Sv)A

(A.58)

(A.59)

(A.60)

(A.61)

(A.62)

(A.63)

The mean curvature

2FM - EN - GL
H =

2(EG - F 2)

BuS 2 - 3(S -S,)I
H2S =

2S 5

2FMl - EN - GL
2S3

2S5
BS 2 - 3(S -S,)B B

2S5  2S5

BS 2 - 5(S Su)B
2S7

BU 2 - 5(S Sv)B
2S7

BS 2 - 5(S Sv)B
2S7

B = BuS 2 - 3(S - Su)B

B, = BuS 2 - B,(S Su) - 3(S, -S, + S -Suu)B

B, = Bu,,S 2 + 2.OB,(S - Sv) - 3(Su, S, + S -Suv)B - 3(S S,)Bv

B = BS 2 - 3(S - S,)B

B = B,,S 2 - Bv(S . S,)- 3(S, S, + S -S,)B

B
2S 3 (A.64)

(A.65)

(A.66)

(A.67)

(A.68)

(A.69)

where

(A.70)

(A.71)

(A.72)

(A.73)

(A.74)
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The principal curvatures

B ± /B 2 - 4AS 2

= H± H 2 - K - 2S (A.75)
2S 3

2HK - Ks
. = 2 -K(A.76)2(n - H)
S(BB. - 2A S 2)S 2 + (8AS 2 - 3B 2 )(S S.) ± (B.S 2 - 3(S S.)B)VB 2 - 4AS 2  (A.77)

2S5 /B 2 - 4AS 2

4S = - -2 (A.78)
2(K - H)

- (BB, - 2A,S 2 )S 2 + (8AS 2 - 3B 2 )(S. S) ± (BS 2 - 3(S . S,)B)B 2 - 4AS (A.79)
2S5 v/B 2 - 4AS

2

2HUKs + 4Hut - 242 - KA
2(- =H) (A.80)2(K - H)

2Hu~v, + 2(Hlx, + HKu) - 2Ku~K - K(A.81)
2(n - H)

2H,,n + 4HKv - 2r - K(A.2)

- 2( - H)

The root mean curvature

Krms = a + 4H 2 - 2K = B - 2AS 2  (A.83)

9Krms 4HHg - K. (BBu - AuS 2 )S2 + (4AS2 - 3B 2 )S Su (A.84)
au 4- 4H 2 - 2K S 5 /B 2 - 2AS 2

Krms _ 4HH, - K _ (BB, - AvS 2)S 2 + (4AS 2 - 3B 2)S Sv (A.85)
(v - 4H 2 - 2K S 5 B 2 - 2AS 2

•2 rm _ 8(H2 + HHu, - Ku.)(2H2 - K) - (4HH, - KU)2

U a(A.86)
du 2  (4H 2 - 2K)2

2 Krm _ 8(HH, + HHu, - K,,)(2H2 - K) - (4HH, - Ku)(4HH - K) (A.87)
duav (4H 2 - 2K)2
2 Krms• _ 8(H 2 + HH,, - K,,)(2H2 - K) - (4HHv - K,) 2

2 (4H - K)(A.88)a2 -(4H2 - 2K)2



Appendix B

Classification of Stationary Points

of Functions

In this appendix we review some relevant material from the extrema theory of functions

necessary in the classification of stationary points of curvature [18], [11].

Single Variable: Let f(x) be a continuous, sufficiently differentiable, function of one

variable x, then a necessary condition that f is a maximum or a minimum at x = a is

f'(x) = 0 at x = a (B.1)

The function f(x)

to

has a maximum, a minimum or neither maximum nor minimum according

* if f"(a) < 0 ; maximum

* if f"(a) > 0 ; minimum

* if f"(a) = 0 ;

- if f"'(a)

- if f"'(a)

$ 0 ; neither maximum nor minimum

= 0 and f(iv)(a) < 0 ; maximum
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- if f"'(a) = 0 and f(iv)(a) > 0 ; minimum

In general, if f(n)(a) is the first derivative function that does not vanish then

* if n is odd; neither maximum nor minimum;

* if n is even;

- if f(")(a) < 0 ; maximum

- if f( )(a) > 0 ; minimum

Two Variables: Let f(x, y) be a continuous function of two variables x and y. A

necessary condition that f has an extremum at (xo, yo) is

f = fy = 0 at (xo, yo) (B.2)

Let H* denote the Hessian matrix f, then f(x, y) has a maximum, a mini-

mum or a saddle point according to

* if fxx < 0 and det[H*] > 0 at (xo, Yo) : maximum

* if fxx > 0 and det[H*] > 0 at (xo, Yo) : minimum

* if det[H*] < 0 at (xo, yo) : saddle point

* if det[H*] = 0 : higher-order partial derivatives must be considered

For degenerate case i.e. det[H*] = 0, there is a theorem by Scheeffer to classify the

extrema, see [11].

The above relations are valid for the classification of the Stationary points for all the

different curvatures discussed, except at the umbilical points for the principal curvatures.

In the case of an umbilical point, a separate criterion exist, [18], [21].

Theorem (Criterion for extrema of principal curvature functions at umbilics):

If we denote W(u, v) = H 2(u, v) - K(u, v) and assume that W(u, v) is at least C 2 smooth

and at least one of the second order partial derivatives of W(u, v) does not vanish then:
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Appendix B. Classification of Stationary Points of Functions 113

1. If VH = 0 at the umbilic, then ,max has a local minimum and rmin has a local

maximum.

3. If VH $ 0 at the umbilic, then "max has a local minimum and Zmin, has a local

maximum if and only if (2HH,, - K,,) 2 - (2HHuu - Kuu)(2HHv, - Kvv) < 0. In

the case the previous relation is zero, additional evaluation of higher order terms is

necessary.



Appendix C

Knot Vectors and Control Points

for the Surfaces Used

We present here the knot vectors and control points for the surfaces used as examples in

this thesis.

For the 1 Bezier patch sinusoidal surface, Fig. (6-1):

Knot Vector - u : [0, 0, 0, 0, 1, 1, 1, 1]

Knot Vector - v : [0,0, 00,1,1,1, 1]

Control Points :

SP P P20 P30  (0, 0, 0) ( , 0) , 0, 0) (1, 0, 0)

PoI P1 P21 P31 (0 ,1 0 ) (2, ., • • 1) ( , 0), 0)
P02 P12 P22 P32 (0, 0) ( 2) , ,0)

1 2 3

Po3 P1 3 P 23 P33  (0, 1, 0) 1, 0) ( 1, 0) (1, 1, 0)

For the 1 Bezier patch surface in Fig. (6-2):

Knot Vector - u : [0, 0, 0,0, 1, 1, 1, 1]

Knot Vector - v : [0, 0, 0,0, 1, 1, 1, 1]

Control Points :
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Poo

Poi

Po0 2

P0 3

Plo0

P'1
P12

P 13

P 20

P 21

P 22

P 23

P 30

P 31

P 32

P 33

= ( 0.00000000000000,

= ( 0.76166807045299,

= ( 0.65723271184842,

= ( 1.60000000000000,

= ( 0.27852446657714,

= ( 0.57935996328779,

= ( 0.43919924825324,

= ( 1.38042813814110,

= ( 0.32975054541603,

= ( 0.69080030605031,

= ( 0.52367956768821,

= ( 1.31296957939178,

= (-0.20000000000000,

= ( 0.74243450440050,

= ( 0.75124557906142,

= ( 1.50000000000000,

0.10000000000000,

-0.17871973643107,

-0.15502141067231,

0.10000000000000,

-0.15693717074725,

-0.11426636286158,

-0.08662265922664,

-0.13906075428985,

-0.17658556930683,

-0.13624558726510,

-0.10328459558212,

-0.13507415315986,

0.10000000000000,

-0.00388300211731,

0.01730029662848,

-0.10000000000000,

For the 2x2 Bezier patch, Hat-like surface, Fig. (6-3):

Knot Vector - u : [0,0,0,0,0.5,1,1,1,1]

Knot Vector - v: [0,0,0,0,0.5,1,1,1,1]

Control Points :

Poo Pxo P20 P30 P40

PoI P11 P 21 P 31 P4 1

P0 2 P12 P22 P32 P42

P 03 P 13 P 23 P 33 P 43

P0 4 P 14 P 24 P 34 P 44

S(0, 0, 1)
(0, 1, 0)

= (0, , -)
(0, ), 0)

(0, 1, D)

For the 7x7 Bezier patch, sinusoidal surface, Fig. (6-4):

Knot Vector - u : [0,0,0,0,0.23835,0.35382,0.45330,0.54670,0.64176,0.76164, 1, 1, 1,1]

0.00000000000000)
-0.13653427756501)

-0.16038769731139)

0.10000000000000)
1.21583433259486)

1.04018643363983)

0.78854102569545)

1.01172029862168)

1.37478487401770)

1.24026710894905)

0.94021750966775)

0.99321070380470)

2.30000000000000)

1.75989287977052)

1.84436023893511)

2.10000000000000)

( , 0)

( , , 0)

(1 1, , 0)

(G, 1, 0)

(1, 0, -1.)
(½, 1, 0o)

(i, I, D)
(I, L, 0)

(., 1, -1.)

(Q, 0, 0)
(~ , , o)

(Q, , 0)

(, 1, 0)

(Q, 1, 0)

(1, 0, ) \
(1, 1 , 0)

(1, 1, -1)

(1, ý , 0)

(1, 1, 1) /
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Knot Vector - v : [0,0,0,0,0.20612, 0.31053, 0.43342, 0.56658, 0.68947, 0.79388, 1, 1, 1, 1]

Control Points :

Poo

Pol

P0 2

P0 3

P0 4

P0 5

P0 6

P0 7

Pos08

Po0 9

Plo
P 11

P 12

P13

P14

P15

P 16

P 17

P 18

P 19

P 20

P 21

P 22

P 23

P 24

=

0.00000000000000,
0.06405088105174,

0.16535046273978,

0.37220662017482,

0.45131622491635,

0.54868377508365,

0.62779337982518,

0.83464953726022,

0.93594911894826,

1.00000000000000,

0.00000000000000,

0.06145704960053,

0.16081849604788,

0.34867661129242,

0.44820516807221,

0.55179483192779,

0.65132338870758,

0.83918150395212,

0.93854295039947,

1.00000000000000,

0.00000000000000,

0.14894930522778,

0.20330364746607,

0.32867576616622,

0.43452525244251,

0.00000000000000,

0.00000000000000,

0.00000000000000,

0.00000000000000,

0.00000000000000,

0.00000000000000,

0.00000000000000,

0.00000000000000,

0.00000000000000,

0.00000000000000,

0.13583253485821,

0.10898676587787,

0.09162968474461,

0.09944550790955,

0.13154829414632,

0.13154829414633,

0.09944550790955,

0.09162968474461,

0.10898676587787,

0.13583253485821,

0.20526948831241,

0.13955288675633,

0.16436407536845,

0.15523791750164,

0.20227632087823,

-0.06221300000000)

0.29135091715567)

0.64727762755190)

0.36063096405809)

0.12518026234675)

-0.12518026234675)

-0.36063096405809)

-0.64727762755190)

-0.29135091715567)

0.06221300000000)

-0.01659031675964)

0.16987645738421)

0.29464539620041)

0.19686984290714)

0.04098895298656)

-0.04098895298656)

-0.19686984290714)

-0.29464539620041)

-0.16987645738421)

0.01659031675964)

-0.00229202238419)

0.07522978969975)

0.11761919945117)

0.08060530429953)

-0.01288762447697)
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P 25

P 26

P 27

P 28

P 29

P 30

P 31

P 32

P 33

P 34

P 35

P 36

P 37

P 38

P 39

P 40

P 41

P 42

P 43

P 44

P 45

P 46

P 47

P 48

P 49

= ( 0.56547474755749,

= ( 0.67132423383379,

= ( 0.79669635253393,

= ( 0.85105069477222,

= ( 1.00000000000000,

= ( 0.00000000000000,

= ( 0.09870897349313,

= ( 0.18687359443761,

= ( 0.33262511044888,

= ( 0.44948459495528,

= ( 0.55051540504472,

= ( 0.66737488955112,

= ( 0.81312640556239,

= ( 0.90129102650687,

= ( 1.00000000000000,

= ( 0.00000000000000,

= ( 0.08630427975619,

= ( 0.17579438354938,

= ( 0.34558813204131,

= ( 0.44825912355741,

= ( 0.55174087644259,

= ( 0.65441186795869,

= ( 0.82420561645062,

= ( 0.91369572024381,

= ( 1.00000000000000,

0.20227632087823,

0.15523791750164,

0.16436407536845,

0.13955288675633,

0.20526948831241,

0.36201976999900,

0.30258105125496,

0.28714446682970,

0.29794762830283,

0.36211148266435,

0.36211148266435,

0.29794762830283,

0.28714446682970,

0.30258105125496,

0.36201976999900,

0.45273715439131,

0.44102447024057,

0.40908095888274,

0.43171959569505,

0.45449790128174,

0.45449790128174,

0.43171959569505,

0.40908095888274,

0.44102447024057,

0.45273715439131,

0.01288762447697)

-0.08060530429953)

-0.11761919945117)

-0.07522978969975)

0.00229202238419)

0.02241372373392)

-0.14752083539221)

-0.09716096566139)

-0.11059319065992)

-0.06422486518159)

0.06422486518159)

0.11059319065992)

0.09716096566139)

0.14752083539221)

-0.02241372373392)

0.02692166188480)

-0.17119160466027)

-0.26476773050818)

-0.18193122404545)

-0.06098474674169)

0.06098474674169)

0.18193122404545)

0.26476773050818)

0.17119160466027)

-0.02692166188480)
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P 50

P 51

P 52

P 53

P 54

P55

P 56

P 57

P 58

P 59

P 60

P 61

P 62

P 63

P 64

P 65

P 66

P 67

P 68

P 69

P 70

P 71

P 72

P 73

P 74

0.00000000000000,

0.08630427975619,

0.17579438354938,

0.34558813204131,

0.44825912355741,

0.55174087644259,

0.65441186795869,

0.82420561645062,

0.91369572024381,

1.00000000000000,

0.00000000000000,

0.09870897349313,

0.18687359443761,

0.33262511044888,

0.44948459495528,

0.55051540504472,

0.66737488955112,

0.81312640556239,

0.90129102650687,

1.00000000000000,

0.00000000000000,

0.14894930522778,

0.20330364746607,

0.32867576616622,

0.43452525244250,

0.54726284560869,

0.55897552975943,

0.59091904111726,

0.56828040430495,

0.54550209871826,

0.54550209871826,

0.56828040430495,

0.59091904111726,

0.55897552975943,

0.54726284560869,

0.63798023000100,

0.69741894874504,

0.71285553317030,

0.70205237169717,

0.63788851733565,

0.63788851733564,

0.70205237169717,

0.71285553317030,

0.69741894874504,

0.63798023000100,

0.79473051168759,

0.86044711324367,

0.83563592463156,

0.84476208249836,

0.79772367912177,
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0.02692166188480)

-0.17119160466027)

-0.26476773050818)

-0.18193122404545)

-0.06098474674169)

0.06098474674169)

0.18193122404545)

0.26476773050818)

0.17119160466026)

-0.02692166188480)

0.02241372373392)

-0.14752083539221)

-0.09716096566139)

-0.11059319065992)

-0.06422486518159)

0.06422486518159)

0.11059319065992)

0.09716096566139)

0.14752083539221)

-0.02241372373392)

-0.00229202238419)

0.07522978969975)

0.11761919945117)

0.08060530429953)

-0.01288762447697)
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P 75

P 76

P 77

P 78

P 7 9

P 80

P 81

P 82

P 83

P 84

P8 5

P 86

P 87

Pss

P 89

P 90

P 91

P 92

P 93

P 94

P 95

P 96

P 97

P 98

P 99

= ( 0.56547474755750,

= ( 0.67132423383379,

= ( 0.79669635253393,

= ( 0.85105069477222,

= ( 1.00000000000000,

= ( 0.00000000000000,

= ( 0.06145704960053,

= ( 0.16081849604788,

= ( 0.34867661129242,

= ( 0.44820516807221,

= ( 0.55179483192779,

= ( 0.65132338870758,

= ( 0.83918150395211,

= ( 0.93854295039947,

= ( 1.00000000000000,

= ( 0.00000000000000,

= ( 0.06405088105174,

= ( 0.16535046273978,

= ( 0.37220662017482,

= ( 0.45131622491635,

= ( 0.54868377508365,

= ( 0.62779337982518,

= ( 0.83464953726022,

= ( 0.93594911894826,

= ( 1.00000000000000,

0.79772367912177,

0.84476208249836,

0.83563592463156,

0.86044711324367,

0.79473051168759,

0.86416746514179,

0.89101323412213,

0.90837031525539,

0.90055449209045,

0.86845170585367,

0.86845170585368,

0.90055449209045,

0.90837031525539,

0.89101323412213,

0.86416746514179,

1.00000000000000,

1.00000000000000,

1.00000000000000,

1.00000000000000,

1.00000000000000,

1.00000000000000,

1.00000000000000,

1.00000000000000,

1.00000000000000,

1.00000000000000,

0.01288762447697)

-0.08060530429953)

-0.11761919945117)

-0.07522978969975)

0.00229202238419)

-0.01659031675964)

0.16987645738421)

0.29464539620041)

0.19686984290714)

0.04098895298656)

-0.04098895298656)

-0.19686984290714)

-0.29464539620041)

-0.16987645738421)

0.01659031675964)

-0.06221300000000)

0.29135091715567)

0.64727762755190)

0.36063096405809)

0.12518026234675)

-0.12518026234675)

-0.36063096405809)

-0.64727762755190)

-0.29135091715567)

0.06221300000000)
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