17 research outputs found

    Ge1-xSnx alloys: Consequences of band mixing effects for the evolution of the band gap Γ-character with Sn concentration

    Get PDF
    In this work we study the nature of the band gap in GeSn alloys for use in silicon-based lasers. Special attention is paid to Sn-induced band mixing effects. We demonstrate from both experiment and ab-initio theory that the (direct) Γ-character of the GeSn band gap changes continuously with alloy composition and has significant Γ-character even at low (6%) Sn concentrations. The evolution of the Γ-character is due to Sn-induced conduction band mixing effects, in contrast to the sharp indirect-to-direct band gap transition obtained in conventional alloys such as Al1−xGaxAs. Understanding the band mixing effects is critical not only from a fundamental and basic properties viewpoint but also for designing photonic devices with enhanced capabilities utilizing GeSn and related material systems

    Investigation of carrier confinement in direct bandgap GeSn/SiGeSn 2D and 0D heterostructures

    Get PDF
    Since the first demonstration of lasing in direct bandgap GeSn semiconductors, the research efforts for the realization of electrically pumped group IV lasers monolithically integrated on Si have significantly intensified. This led to epitaxial studies of GeSn/SiGeSn hetero- and nanostructures, where charge carrier confinement strongly improves the radiative emission properties. Based on recent experimental literature data, in this report we discuss the advantages of GeSn/SiGeSn multi quantum well and quantum dot structures, aiming to propose a roadmap for group IV epitaxy. Calculations based on 8-band k∙p and effective mass method have been performed to determine band discontinuities, the energy difference between Γ- and L-valley conduction band edges, and optical properties such as material gain and optical cross section. The effects of these parameters are systematically analyzed for an experimentally achievable range of Sn (10 to 20 at.%) and Si (1 to 10 at.%) contents, as well as strain values (−1 to 1%). We show that charge carriers can be efficiently confined in the active region of optical devices for experimentally acceptable Sn contents in both multi quantum well and quantum dot configurations

    Epitaxial GeSn: impact of process conditions on material quality

    No full text
    The electrical and optical material properties of epitaxial Ge1−xSnx and SiyGe1−x−ySnx are of high interest for novel device applications. However, the limited Sn solubility in Ge makes the epitaxial growth of Ge1−xSnx and SiyGe1−x−ySnx challenging. Most of the literature describing the epitaxial growth is for Ge2H6 and SnCl4 as Ge and Sn precursors, respectively. A more recent publication deals with the epitaxial growth of high-quality Ge1−xSnx with the more conventional GeH4. In this manuscript, we compare the structural and optical material quality of Ge1−xSnx, epitaxially grown on Ge virtual substrates as a function of growth pressure, growth temperature, the choice of the carrier gas (H2 or N2) and the choice of the Ge precursor (GeH4 versus Ge2H6). The best material quality in terms of surface morphology and photoluminescence characteristics is obtained if GeH4 is used as a Ge precursor. For Ge1−xSnx grown with Ge2H6 and at atmospheric pressure, pyramidical defects can be seen and there is a risk for uncontrolled local Sn agglomeration. The pyramidical defects are not observed on Ge1−xSnx layers grown at reduced pressure, but the highest achievable substitutional Sn concentration is lower. No pyramidical defects are found for Ge1−xSnx layers grown with GeH4 and the issue of uncontrolled local Sn agglomeration does not appear
    corecore