88 research outputs found

    Transcriptomic screen for DIS3 and DIS3L1 exosome subunits associated functional networks in colorectal cancer

    Get PDF
    The final step of cytoplasmic mRNA degradation proceeds in either a 5’-3’ direction, catalyzed by XRN1, or in a 3’-5’ direction catalyzed by the exosome. In yeast, DIS3/Rrp44 protein is the catalytic subunit of the exosome. In humans, there are three known paralogues of this enzyme: DIS3, DIS3L1, and DIS3L2. Important findings over the last years have shed a new light onto the.mechanistic details of RNA degradation by these exoribonucleases. In addition, it has been shown that they are involved in growth, mitotic control and important human diseases, including cancer. For example, DIS3L2 inactivation was associated with mitotic abnormalities and altered expression of mitotic checkpoint proteins (Astuti et al., 2012). In another study, DIS3 was found to be highly expressed in colorectal cancer (CRC), suggesting an oncogenic function (Camps et al., 2013). A major challenge in systems biology is to reveal the cellular networks that give rise to specific phenotypes (Lan et al., 2013). In this project, we aim to analyze how DIS3 and DIS3L1 regulate the human transcriptome, and how their functional interactions modulate the transcriptional reprogramming of colorectal cancer cells. We will perform an extensive characterization of the DIS3 and DIS3L1 mRNA targets, using DIS3 and DIS3L1 knockdown and microarray analysis, in normal colorectal cells, and in different CRC cell lines, in the presence and absence of stress stimuli, such as hypoxia. Differential expression and gene set enrichment analyses of collected data will elucidate new cellular pathways regulated by DIS3 and DIS3L1 and/or by their targets, as well as how they can be involved in CRC. In addition, this analysis may reveal novel functional networks through which the RNA exosome modulates the eukaryotic transcriptome

    Regulation of cardiac cell fate by microRNAs : implications for heart regeneration

    Get PDF
    © 2014 by the authors; licensee MDPI, Basel, SwitzerlandmicroRNAs are post-transcriptional regulators of gene expression that have been shown to be central players in the establishment of cellular programs, often acting as switches that control the choice between proliferation and differentiation during development and in adult tissues. The heart develops from two small patches of cells in the mesoderm, the heart fields, which originate the different cardiac cell types, including cardiomyocytes, vascular smooth muscle and endothelial cells. These progenitors proliferate and differentiate to establish a highly connected three-dimensional structure, involving a robust succession of gene expression programs strongly influenced by microRNAs. Although the mammalian heart has conventionally been viewed as a post-mitotic organ, cardiac cells have recently been shown to display some regenerative potential, which is nonetheless insufficient to regenerate heart lesions, in contrast with other vertebrates like the zebrafish. Both the proliferation of adult cardiac stem cells and the ability of cardiomyocytes to re-enter the cell cycle have been proposed to sustain these regenerative processes. Here we review the role of microRNAs in the control of stem cell and cardiomyocyte dependent cardiac regeneration processes, and discuss potential applications for the treatment of cardiac injury.info:eu-repo/semantics/publishedVersio

    Characterization of dextrin-based hydrogels : rheology, biocompatibility, and degradation

    Get PDF
    A new class of degradable dextrin-based hydrogels (dextrin-HEMA) was developed. The hydroxyethyl methacrylate ester (HEMA) hydroxyl groups were activated with N,N' carbonyldiimidazole (CDI), followed by their coupling to dextrin, yielding a derivatized material that can be polymerized in aqueous solution to form hydrogels. A comparative study of the stability of the dextrin-HEMA hydrogels and dextrin-vinyl acrylate (dextrin-VA, produced in previous work) revealed that only the firsts are effectively hydrolyzed under physiological conditions. A severe mass loss of dextrin-HEMA gels occurs over time, culminating in the complete dissolution of the gels. Rheologic analysis confirmed that physical structuring is less pronounced when dextrin is modified with methacrylate side groups. The biocompatibility results revealed that the dextrin hydrogels have negligible cell toxicity, irrespective of the hydrogel type (HEMA and VA), allowing cell adhesion and proliferation. Gathering the biocompatibility and the ability to tailor the release profiles, we consider dextrin a promising biomaterial for biomedical applications, namely for controlled release

    Machine learning modelling of blood lipid biomarkers in familial hypercholesterolaemia versus polygenic/environmental dyslipidaemia

    Get PDF
    Familial hypercholesterolaemia increases circulating LDL-C levels and leads to premature cardiovascular disease when undiagnosed or untreated. Current guidelines support genetic testing in patients complying with clinical diagnostic criteria and cascade screening of their family members. However, most of hyperlipidaemic subjects do not present pathogenic variants in the known disease genes, and most likely suffer from polygenic hypercholesterolaemia, which translates into a relatively low yield of genetic screening programs. This study aims to identify new biomarkers and develop new approaches to improve the identification of individuals carrying monogenic causative variants. Using a machine-learning approach in a paediatric dataset of individuals, tested for disease causative genes and with an extended lipid profile, we developed new models able to classify familial hypercholesterolaemia patients with a much higher specificity than currently used methods. The best performing models incorporated parameters absent from the most common FH clinical criteria, namely apoB/apoA-I, TG/apoB and LDL1. These parameters were found to contribute to an improved identification of monogenic individuals. Furthermore, models using only TC and LDL-C levels presented a higher specificity of classification when compared to simple cut-offs. Our results can be applied towards the improvement of the yield of genetic screening programs and corresponding costs.This work was supported by UIDB/04046/2020 Research Unit grant from FCT, Portugal (to BioISI). MC is recipient of a fellowship from the BioSys Ph.D. programme PD65-2012 (Ref PD/BD/114387/2016) from FCT (Portugal).info:eu-repo/semantics/publishedVersio

    IsomiR_Window : a system for analyzing small‑RNA‑seq data in an integrative and user‑friendly manner

    Get PDF
    Research Areas: Biochemistry & Molecular ; Biology Biotechnology & Applied ; Microbiology ; Mathematical & Computational BiologyBackground: IsomiRs are miRNA variants that vary in length and/or sequence when compared to their canonical forms. These variants display differences in length and/or sequence, including additions or deletions of one or more nucleotides (nts) at the 5′ and/or 3′ end, internal editings or untemplated 3′ end additions. Most available tools for small RNA-seq data analysis do not allow the identification of isomiRs and often require advanced knowledge of bioinformatics. To overcome this, we have developed IsomiR Window, a platform that supports the systematic identification, quantification and functional exploration of isomiR expression in small RNA-seq datasets, accessible to users with no computational skills. Methods: IsomiR Window enables the discovery of isomiRs and identification of all annotated non-coding RNAs in RNA-seq datasets from animals and plants. It comprises two main components: the IsomiR Window pipeline for data processing; and the IsomiR Window Browser interface. It integrates over ten third-party softwares for the analysis of small-RNA-seq data and holds a new algorithm that allows the detection of all possible types of isomiRs. These include 3′ and 5′end isomiRs, 3′ end tailings, isomiRs with single nucleotide polymorphisms (SNPs) or potential RNA editings, as well as all possible fuzzy combinations. IsomiR Window includes all required databases for analysis and annotation, and is freely distributed as a Linux virtual machine, including all required software. Results: IsomiR Window processes several datasets in an automated manner, without restrictions of input file size. It generates high quality interactive figures and tables which can be exported into different formats. The performance of isomiR detection and quantification was assessed using simulated small-RNA-seq data. For correctly mapped reads, it identified different types of isomiRs with high confidence and 100% accuracy. The analysis of a small RNA-seq data from Basal Cell Carcinomas (BCCs) using isomiR Window confirmed that miR-183-5p is up-regulated in Nodular BCCs, but revealed that this effect was predominantly due to a novel 5′end variant. This variant displays a different seed region motif and 1756 isoform-exclusive mRNA targets that are significantly associated with disease pathways, underscoring the biological relevance of isomiR-focused analysis. IsomiR Window is available at https ://isomi r.fc.ul.pt/.info:eu-repo/semantics/publishedVersio

    DIS3L2 knockdown impairs key oncogenic properties of colorectal cancer cells via the mTOR signaling pathway

    Get PDF
    DIS3L2 degrades different types of RNAs in an exosome-independent manner including mRNAs and several types of non-coding RNAs. DIS3L2-mediated degradation is preceded by the addition of nontemplated uridines at the 3’end of its targets by the terminal uridylyl transferases 4 and 7. Most of the literature that concerns DIS3L2 characterizes its involvement in several RNA degradation pathways, however, there is some evidence that its dysregulated activity may contribute to cancer development. In the present study, we characterize the role of DIS3L2 in human colorectal cancer (CRC). Using the public RNA datasets from The Cancer Genome Atlas (TCGA), we found higher DIS3L2 mRNA levels in CRC tissues versus normal colonic samples as well as worse prognosis in patients with high DIS3L2 expression. In addition, our RNA deep-sequencing data revealed that knockdown (KD) of DIS3L2 induces a strong transcriptomic disturbance in SW480 CRC cells. Moreover, gene ontology (GO) analysis of significant upregulated transcripts displays enrichment in mRNAs encoding proteins involved in cell cycle regulation and cancer-related pathways, which guided us to evaluate which specific hallmarks of cancer are differentially regulated by DIS3L2. To do so, we employed four CRC cell lines (HCT116, SW480, Caco-2 and HT-29) differing in their mutational background and oncogenicity. We demonstrate that lack depletion of DIS3L2 results in reduced cell viability of highly oncogenic SW480 and HCT116 CRC cells, but had little or no impact in the more differentiated Caco-2 and HT-29 cells. Remarkably, the mTOR signaling pathway, crucial for cell survival and growth, is downregulated after DIS3L2 KD, whereas AZGP1, an mTOR pathway inhibitor, is upregulated. Furthermore, our results indicate that depletion of DIS3L2 disturbs metastasis-associated properties, such as cell migration and invasion, only in highly oncogenic CRC cells. Our work reveals for the first time a role for DIS3L2 in sustaining CRC cell proliferation and provides evidence that this ribonuclease is required to support the viability and invasive behavior of dedifferentiated CRC cells.This work was supported by Instituto Nacional de Saúde Doutor Ricardo Jorge and Fundação para a Ciência e a Tecnologia (FCT) [UID/MULTI/04046/2019 Research Unit Grant (to BioISI)]. Juan F. García-Moreno and Paulo J. da Costa were recipients of a fellowship from BioSys PhD programme (SFRH/BD/52495/2014, and PD/BD/142898/2018, respectively).info:eu-repo/semantics/publishedVersio

    Experimental supporting data on DIS3L2 over nonsense-mediated mRNA decay targets in human cells

    Get PDF
    In this article, we present supportive data related to the research article “A role for DIS3L2 over natural nonsense-mediated mRNA decay targets in human cells” [1], where interpretation of the data presented here is available. Indeed, here we analyze the impact of the DIS3L2 exoribonuclease over nonsense-mediated mRNA decay (NMD)-targets. Specifically, we present data on: a) the expression of various reporter human β-globin mRNAs, monitored by Northern blot and RT-qPCR, before and after altering DIS3L2 levels in HeLa cells, and b) the gene expression levels of deregulated transcripts generated by re-analyzing publicly available data from UPF1-depleted HeLa cells that were further cross-referenced with a dataset of transcripts upregulated in DIS3L2-depleted cells. These analyses revealed that DIS3L2 regulates the levels of a subset of NMD-targets. These data can be valuable for researchers interested in the NMD mechanism.This work was partially supported by Fundação para a Ciencia e a Tecnologia (FCT) (PTFC/BIM-MEC/3749/2014 to LR and UID/MULTI/04046/2013 to BioISI). PJdC, HAS and JFG-M are recipients of a fellowship from BioSys PhD programme (SFRH/BD/52495/2014, SFRH/BD/52492/2014, and PD/BD/ 142898/2018, respectively) and JM is a postdoctoral fellow (SFRH/BPD/98360/2013) from FCT. Work at ITQB-NOVA was financially supported by: Project LISBOA-01-0145-FEDER-007660 funded by the European Regional Development Fund (FEDER) through COMPETE2020 - Programa Operacional Competitividade e Internacionalização (POCI) and by FCT funds: PTDC/BIA-MIC/1399/2014 to CMA and PTFC/BIM-MEC/3749/2014 to SCV. SCV was financed by program IF of FCT (IF/00217/2015). MS was financed by an FCT contract according to DL57/2016 [SFRH/BPD/109464/2015]info:eu-repo/semantics/publishedVersio
    corecore