282 research outputs found

    More evidence of localization in the low-lying Dirac spectrum

    Full text link
    We have extended our computation of the inverse participation ratio of low-lying (asqtad) Dirac eigenvectors in quenched SU(3). The scaling dimension of the confining manifold is clearer and very near 3. We have also computed the 2-point correlator which further characterizes the localization.Comment: presented at Lattice2005(Topology and Confinement), Dublin, July 25-30, 2005, 6 pages, 3 figures, to appear in Proceedings of Scienc

    Pressure Modulator Radiometer (PMR) tests

    Get PDF
    The pressure modulator technique was evaluated for monitoring pollutant gases in the Earth's atmosphere of altitude levels corresponding to the mid and lower troposphere. Using an experimental set up and a 110 cm sample cell, pressure modulator output signals resulting from a range of gas concentrations in the sample cell were examined. Then a 20 cm sample cell was modified so that trace gas properties in the atmosphere could be simulated in the laboratory. These gas properties were measured using an infrared sensor

    Going Deeper: Biomolecular Tools for Acoustic and Magnetic Imaging and Control of Cellular Function

    Get PDF
    Most cellular phenomena of interest to mammalian biology occur within the context of living tissues and organisms. However, today’s most advanced tools for observing and manipulating cellular function, based on fluorescent or light-controlled proteins, work best in cultured cells, transparent model species, or small, surgically accessed anatomical regions. Their reach into deep tissues and larger animals is limited by photon scattering. To overcome this limitation, we must design biochemical tools that interface with more penetrant forms of energy. For example, sound waves and magnetic fields easily permeate most biological tissues, allowing the formation of images and delivery of energy for actuation. These capabilities are widely used in clinical techniques such as diagnostic ultrasound, magnetic resonance imaging, focused ultrasound ablation, and magnetic particle hyperthermia. Each of these modalities offers spatial and temporal precision that could be used to study a multitude of cellular processes in vivo. However, connecting these techniques to cellular functions such as gene expression, proliferation, migration, and signaling requires the development of new biochemical tools that can interact with sound waves and magnetic fields as optogenetic tools interact with photons. Here, we discuss the exciting challenges this poses for biomolecular engineering and provide examples of recent advances pointing the way to greater depth in in vivo cell biology

    Spatiotemporal control of mitotic exit during anaphase by an aurora B-Cdk1 crosstalk

    Get PDF
    According to the prevailing ‘clock’ model, chromosome decondensation and nuclear envelope reformation when cells exit mitosis are byproducts of Cdk1 inactivation at the metaphase-anaphase transition, controlled by the spindle assembly checkpoint. However, mitotic exit was recently shown to be a function of chromosome separation during anaphase, assisted by a midzone Aurora B phosphorylation gradient-the ‘ruler’ model. Here we found that Cdk1 remains active during anaphase due to ongoing APC/CCdc20- and APC/CCdh1-mediated degradation of B-type Cyclins in Drosophila and human cells. Failure to degrade B-type Cyclins during anaphase prevented mitotic exit in a Cdk1-dependent manner. Cyclin B1-Cdk1 localized at the spindle midzone in an Aurora B-dependent manner, with incompletely separated chromosomes showing the highest Cdk1 activity. Slowing down anaphase chromosome motion delayed Cyclin B1 degradation and mitotic exit in an Aurora B-dependent manner. Thus, a crosstalk between molecular ‘rulers’ and ‘clocks’ licenses mitotic exit only after proper chromosome separation.We thank Eric Griffis, Jean-René Huynh, Claudio Sunkel, Jonathon Pines, Melina Schuh and Christian Lehner for the kind gift of reagents, and Marco Gonzalez-Gaitán for supporting OA during the final stages of this work. LPC is the recipient of a Marie Skłodowska-Curie Action fellowship (grant agreement 746515). EMS holds an FCT Investigator position and his work is supported by Fundac¸ ão para a Ciência e a Tecnologia (PTDC/BEX-BCM/0432/2014). This work was supported by R01GM107026 grant to TJM and a Commonwealth Honors College grant to CMC Confocal and FLIM microscopy data collection was performed in the Light Microscopy Facility and Nikon Center of Excellence at the Institute for Applied Life Sciences, University of Massachusetts Amherst with support from the Massachusetts Life Science Center. Work in the HM lab is supported by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 681443) and FLAD Life Science 2020

    Biomolecular Ultrasound and Sonogenetics

    Get PDF
    Visualizing and modulating molecular and cellular processes occurring deep within living organisms is fundamental to our study of basic biology and disease. Currently, the most sophisticated tools available to dynamically monitor and control cellular events rely on light-responsive proteins, which are difficult to use outside of optically transparent model systems, cultured cells, or surgically accessed regions owing to strong scattering of light by biological tissue. In contrast, ultrasound is a widely used medical imaging and therapeutic modality that enables the observation and perturbation of internal anatomy and physiology but has historically had limited ability to monitor and control specific cellular processes. Recent advances are beginning to address this limitation through the development of biomolecular tools that allow ultrasound to connect directly to cellular functions such as gene expression. Driven by the discovery and engineering of new contrast agents, reporter genes, and bioswitches, the nascent field of biomolecular ultrasound carries a wave of exciting opportunities

    Associations of plasma fibrinogen assays, C-reactive protein and interleukin-6 with previous myocardial infarction

    Get PDF
    Background: The association of plasma fibrinogen with myocardial infarction (MI) may (like that of C-reactive protein, CRP) be a marker of subclinical inflammation, mediated by cytokines such as interleukin-6 (IL-6). There are well- recognized discrepancies between commonly performed fibrinogen assays. Increased ratio of clottable fibrinogen to intact fibrinogen (measured by a recently developed immunoassay) has been proposed as a measure of hyperfunctional fibrinogen, and is elevated in acute MI.<br/> Objective: To compare the associations of intact fibrinogen and four routine fibrinogen assays (two von Clauss assays; one prothrombin-time derived; and one immunonephelometric) in a case-control study of previous MI. Patients/methods: Cases (n = 399) were recruited 3-9 months after their event; 413 controls were age- and sex-matched from the case-control study local population. Intact fibrinogen was measured in 50% of subjects. Results: All routine fibrinogen assays showed high intercorrelations (r = 0.82-0.93) and significant (P lt 0.0001) increased mean levels in cases vs. controls. These four routine assays correlated only moderately with intact fibrinogen (r = 0.45-0.62), while intact fibrinogen showed only a small, nonsignificant increase in cases vs. controls. Consequently, the ratio of each of the four routine assays to the intact fibrinogen assay was significantly higher (P lt 0.0003) in cases vs. controls. Each fibrinogen assay correlated with plasma levels of CRP and IL-6 (which were also elevated in cases vs. controls). Each routine fibrinogen assay remained significantly elevated in cases vs. controls after further adjustment for C-reactive protein and interleukin-6. Conclusions: These data provide evidence for acquired, increased hyperfunctional plasma fibrinogen in MI survivors, which is not associated with markers of inflammatory reactions. The causes and significance of these results remain to be established in prospective studies

    Vulnerability of Polarised Intestinal Porcine Epithelial Cells to Mycotoxin Deoxynivalenol Depends on the Route of Application

    Get PDF
    BACKGROUND AND AIMS: Deoxynivalenol (DON) is a Fusarium derived mycotoxin, often occurring on cereals used for human and animal nutrition. The intestine, as prominent barrier for nutritional toxins, has to handle the mycotoxin from the mucosa protected luminal side (apical exposure), as well as already absorbed toxin, reaching the cells from basolateral side via the blood stream. In the present study, the impact of the direction of DON exposure on epithelial cell behaviour and intestinal barrier integrity was elucidated. METHODS: A non-transformed intestinal porcine epithelial cell line (IPEC-J2), cultured in membrane inserts, serving as a polarised in vitro model to determine the effects of deoxynivalenol (DON) on cellular viability and tight junction integrity. RESULTS: Application of DON in concentrations up to 4000 ng/mL for 24, 48 and 72 hours on the basolateral side of membrane cultured polarised IPEC-J2 cells resulted in a breakdown of the integrity of cell connections measured by transepithelial electrical resistance (TEER), as well as a reduced expression of the tight junction proteins ZO-1 and claudin 3. Epithelial cell number decreased and nuclei size was enlarged after 72 h incubation of 4000 ng/mL DON from basolateral. Although necrosis or caspase 3 mediated apoptosis was not detectable after basolateral DON application, cell cycle analysis revealed a significant increase in DNA fragmentation, decrease in G0/G1 phase and slight increase in G2/M phase after 72 hours incubation with DON 2000 ng/mL. CONCLUSIONS: Severity of impact of the mycotoxin deoxynivalenol on the intestinal epithelial barrier is dependent on route of application. The epithelium appears to be rather resistant towards apical (luminal) DON application whereas the same toxin dose from basolateral severely undermines barrier integrity

    P. brasiliensis virulence is affected by SconC, the negative regulator of inorganic sulfur assimilation

    Get PDF
    Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37°C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis.J.F.M. and J.G.R. were supported by a PhD grant from Fundacao para a Ciencia e Tecnologia (FCT). This work was supported by a grant from FCT (PTDC/BIA-MIC/108309/2008). M. Sturme. and M. Saraiva are Ciencia 2008 fellows. The authors would also like to thank FAPESP (Fundacao para Amparo a Pesquisa do Estado de Sao Paulo) and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Impaired complex I repair causes recessive Leber's hereditary optic neuropathy

    Get PDF
    Leber's hereditary optic neuropathy (LHON) is the most frequent mitochondrial disease and was the first to be genetically defined by a point mutation in mitochondrial DNA (mtDNA). A molecular diagnosis is achieved in up to 95% of cases, the vast majority of which are accounted for by 3 mutations within mitochondrial complex I subunit-encoding genes in the mtDNA (mtLHON). Here, we resolve the enigma of LHON in the absence of pathogenic mtDNA mutations. We describe biallelic mutations in a nuclear encoded gene, DNAJC30, in 33 unsolved patients from 29 families and establish an autosomal recessive mode of inheritance for LHON (arLHON), which to date has been a prime example of a maternally inherited disorder. Remarkably, all hallmarks of mtLHON were recapitulated, including incomplete penetrance, male predominance, and significant idebenone responsivity. Moreover, by tracking protein turnover in patient-derived cell lines and a DNAJC30-knockout cellular model, we measured reduced turnover of specific complex I N-module subunits and a resultant impairment of complex I function. These results demonstrate that DNAJC30 is a chaperone protein needed for the efficient exchange of complex I subunits exposed to reactive oxygen species and integral to a mitochondrial complex I repair mechanism, thereby providing the first example to our knowledge of a disease resulting from impaired exchange of assembled respiratory chain subunits

    Functional overlap of microtubule assembly factors in chromatin-promoted spindle assembly

    Get PDF
    Author Posting. © American Society for Cell Biology, 2009. This article is posted here by permission of American Society for Cell Biology for personal use, not for redistribution. The definitive version was published in Molecular Biology of the Cell 20 (2009): 2766-2773, doi:10.1091/mbc.E09-01-0043.Distinct pathways from centrosomes and chromatin are thought to contribute in parallel to microtubule nucleation and stabilization during animal cell mitotic spindle assembly, but their full mechanisms are not known. We investigated the function of three proposed nucleation/stabilization factors, TPX2, {gamma}-tubulin and XMAP215, in chromatin-promoted assembly of anastral spindles in Xenopus laevis egg extract. In addition to conventional depletion-add back experiments, we tested whether factors could substitute for each other, indicative of functional redundancy. All three factors were required for microtubule polymerization and bipolar spindle assembly around chromatin beads. Depletion of TPX2 was partially rescued by the addition of excess XMAP215 or EB1, or inhibiting MCAK (a Kinesin-13). Depletion of either {gamma}-tubulin or XMAP215 was partially rescued by adding back XMAP215, but not by adding any of the other factors. These data reveal functional redundancy between specific assembly factors in the chromatin pathway, suggesting individual proteins or pathways commonly viewed to be essential may not have entirely unique functions.This work was supported by the American Cancer Society (grant PF0711401 to T. J. Maresca), the National Cancer Institute (grant CA078048-09 to T. J. Mitchison) and the National Institutes of Health (grant F32GM080049 to J. C. Gatlin and grant GM24364 to E. D. Salmon)
    • …
    corecore