85 research outputs found

    Glacier algae:a dark past and a darker future

    Get PDF
    “Glacier algae” grow on melting glacier and ice sheet surfaces across the cryosphere, causing the ice to absorb more solar energy and consequently melt faster, while also turning over carbon and nutrients. This makes glacier algal assemblages, which are typically dominated by just three main species, a potentially important yet under-researched component of the global biosphere, carbon, and water cycles. This review synthesizes current knowledge on glacier algae phylogenetics, physiology, and ecology. We discuss their significance for the evolution of early land plants and highlight their impacts on the physical and chemical supraglacial environment including their role as drivers of positive feedbacks to climate warming, thereby demonstrating their influence on Earth’s past and future. Four complementary research priorities are identified, which will facilitate broad advances in glacier algae research, including establishment of reliable culture collections, sequencing of glacier algae genomes, development of diagnostic biosignatures for remote sensing, and improved predictive modeling of glacier algae biological-albedo effects

    Potential Activity of Subglacial Microbiota Transported to Anoxic River Delta Sediments

    Get PDF
    The Watson River drains a portion of the SW Greenland ice sheet, transporting microbial communities from subglacial environments to a delta at the head of Søndre Strømfjord. This study investigates the potential activity and community shifts of glacial microbiota deposited and buried under layers of sediments within the river delta. A long-term (12-month) incubation experiment was established using Watson River delta sediment under anaerobic conditions, with and without CO2/H2 enrichment. Within CO2/H2-amended incubations, sulphate depletion and a shift in the microbial community to a 52% predominance of Desulfosporosinus meridiei by day 371 provides evidence for sulphate reduction. We found evidence of methanogenesis in CO2/H2-amended incubations within the first 5 months, with production rates of ~4 pmol g−1 d−1, which was likely performed by methanogenic Methanomicrobiales- and Methanosarcinales-related organisms. Later, a reduction in methane was observed to be paired with the depletion of sulphate, and we hypothesise that sulphate reduction out competed hydrogenotrophic methanogenesis. The structure and diversity of the original CO2/H2-amended incubation communities changed dramatically with a major shift in predominant community members and a decline in diversity and cell abundance. These results highlight the need for further investigations into the fate of subglacial microbiota within downstream environments

    Microbial Degradation of 2,4-Dichlorophenoxyacetic Acid on the Greenland Ice Sheet

    Get PDF
    The Greenland ice sheet (GrIS) receives organic carbon (OC) of anthropogenic origin, including pesticides, from the atmosphere and/or local sources, and the fate of these compounds in the ice is currently unknown. The ability of supraglacial heterotrophic microbes to mineralize different types of OC is likely a significant factor determining the fate of anthropogenic OC on the ice sheet. Here we determine the potential of the microbial community from the surface of the GrIS to mineralize the widely used herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). Surface ice cores were collected and incubated for up to 529 days in microcosms simulating in situ conditions. Mineralization of side chain- and ring-labeled [C-14]2,4-D was measured in the samples, and quantitative PCR targeting the tfdA genes in total DNA extracted from the ice after the experiment was performed. We show that the supraglacial microbial community on the GrIS contains microbes that are capable of degrading 2,4-D and that they are likely present in very low numbers. They can mineralize 2,4-D at a rate of up to 1 nmol per m(2) per day, equivalent to similar to 26 ng C m(-2) day(-1). Thus, the GrIS should not be considered a mere reservoir of all atmospheric contaminants, as it is likely that some deposited compounds will be removed from the system via biodegradation processes before their potential release due to the accelerated melting of the ice sheet

    Glacial microbiota are hydrologically connected and temporally variable

    Get PDF
    Glaciers are melting rapidly. The concurrent export of microbial assemblages alongside glacial meltwater is expected to impact the ecology of adjoining ecosystems. Currently, the source of exported assemblages is poorly understood, yet this information may be critical for understanding how current and future glacial melt seasons may influence downstream environments. We report on the connectivity and temporal variability of microbiota sampled from supraglacial, subglacial and periglacial habitats and water bodies within a glacial catchment. Sampled assemblages showed evidence of being biologically connected through hydrological flowpaths, leading to a meltwater system that accumulates prokaryotic biota as it travels downstream. Temporal changes in the connected assemblages were similarly observed. Snow assemblages changed markedly throughout the sample period, likely reflecting changes in the surrounding environment. Changes in supraglacial meltwater assemblages reflected the transition of the glacial surface from snow‐covered to bare‐ice. Marked snowmelt across the surrounding periglacial environment resulted in the flushing of soil assemblages into the riverine system. In contrast, surface ice within the ablation zone and subglacial meltwaters remained relatively stable throughout the sample period. Our results are indicative that changes in snow and ice melt across glacial environments will influence the abundance and diversity of microbial assemblages transported downstream

    Contamination of the Arctic reflected in microbial metagenomes from the Greenland ice sheet

    Get PDF
    Globally emitted contaminants accumulate in the Arctic and are stored in the frozen environments of the cryosphere. Climate change influences the release of these contaminants through elevated melt rates, resulting in increased contamination locally. Our understanding of how biological processes interact with contamination in the Arctic is limited. Through shotgun metagenomic data and binned genomes from metagenomes we show that microbial communities, sampled from multiple surface ice locations on the Greenland ice sheet, have the potential for resistance to and degradation of contaminants. The microbial potential to degrade anthropogenic contaminants, such as toxic and persistent polychlorinated biphenyls, was found to be spatially variable and not limited to regions close to human activities. Binned genomes showed close resemblance to microorganisms isolated from contaminated habitats. These results indicate that, from a microbiological perspective, the Greenland ice sheet cannot be seen as a pristine environmentpublishersversionPeer reviewe

    How robust are in-situ observations for validating satellite-derived albedo over the dark zone of the Greenland Ice Sheet?

    Get PDF
    Calibration and validation of satellite‐derived ice sheet albedo data require high‐quality, in situ measurements commonly acquired by up and down facing pyranometers mounted on automated weather stations (AWS). However, direct comparison between ground and satellite‐derived albedo can only be justified when the measured surface is homogeneous at the length‐scale of both satellite pixel and in situ footprint. Here we use digital imagery acquired by an unmanned aerial vehicle to evaluate point‐to‐pixel albedo comparisons across the western, ablating margin of the Greenland Ice Sheet. Our results reveal that in situ measurements overestimate albedo by up to 0.10 at the end of the melt season because the ground footprints of AWS‐mounted pyranometers are insufficient to capture the spatial heterogeneity of the ice surface as it progressively ablates and darkens. Statistical analysis of 21 AWS across the entire Greenland Ice Sheet reveals that almost half suffer from this bias, including some AWS located within the wet snow zone

    Identification and analysis of low-molecular-weight dissolved organic carbon in subglacial basal ice ecosystems by ion chromatography

    Get PDF
    Determining the concentration and composition of dissolved organic carbon (DOC) in glacial ecosystems is important for assessments of in situ microbial activity and contributions to wider biogeochemical cycles. Nonetheless, there is limited knowledge of the abundance and character of DOC in basal ice and the subglacial environment and a lack of quantitative data on low-molecular-weight (LMW) DOC components, which are believed to be highly bioavailable to microorganisms. We investigated the abundance and composition of DOC in basal ice via a molecular-level DOC analysis. Spectrofluorometry and a novel ion chromatographic method, which has been little utilized in glacial science for LMW-DOC determinations, were employed to identify and quantify the major LMW fractions (free amino acids, carbohydrates, and carboxylic acids) in basal ice from four glaciers, each with a different type of overridden material (i.e. the pre-entrainment sedimentary type such as lacustrine material or palaeosols). Basal ice from Joyce Glacier (Antarctica) was unique in that 98% of the LMW-DOC was derived from the extremely diverse free amino acid (FAA) pool, comprising 14 FAAs. LMW-DOC concentrations in basal ice were dependent on the bioavailability of the overridden organic carbon (OC), which in turn was influenced by the type of overridden material. Mean LMW-DOC concentrations in basal ice from Russell Glacier (Greenland), Finsterwalderbreen (Svalbard), and Engabreen (Norway) were low (0–417nMC), attributed to the relatively refractory nature of the OC in the overridden palaeosols and bedrock. In contrast, mean LMW-DOC concentrations were an order of magnitude higher (4430nMC) in basal ice from Joyce Glacier, a reflection of the high bioavailability of the overridden lacustrine material (> 17% of the sediment OC comprised extractable carbohydrates, a proxy for bioavailable OC). We find that the overridden material may act as a direct (via abiotic leaching) and indirect (via microbial cycling) source of DOC to the subglacial environment and provides a range of LMW-DOC compounds that may stimulate microbial activity in wet subglacial sediments
    • …
    corecore