565 research outputs found

    Evaluation of high Reynolds number flow in a 180 degree turn-around-duct

    Get PDF
    Mean and turbulent velocities were measured for the flow in a 180 degree turn-around-duct over a Reynolds number range from 600,000 to greater than 900,000. The measurements were made in water using a forward scattering laser velocimeter. A duct of 100 x 10 cm constant cross-section, with a mean radius of curvature (centerline) of 10 cm was employed for the study. The measurements are in agreement with previous studies in that the use of local bulk velocity to nondimensionalize the mean and turbulent velocities reduce the Reynolds number variations. The basic phenomenon of relaminarization along the inner surface at the exit of the turn are similar to the flow observed at low Reynolds numbers. The separation bubble region shows a systematic variation with Reynolds number, however the Reynolds number effect may be of second order in the calculation of the overall flow. Large tangential, radial, and lateral turbulent velocities are measured along the outer surface of the turn

    Optimal strategies of radial velocity observations in planet search surveys

    Full text link
    Applications of the theory of optimal design of experiments to radial velocity planet search surveys are considered. Different optimality criteria are discussed, basing on the Fisher, Shannon, and Kullback-Leibler informations. Algorithms of optimal scheduling of RV observations for two important practical problems are considered. The first problem is finding the time for future observations to yield the maximum improvement of the precision of exoplanetary orbital parameters and masses. The second problem is finding the most favourable time for distinguishing alternative orbital fits (the scheduling of discriminating observations). These methods of optimal planning are demonstrated to be potentially efficient for multi-planet extrasolar systems, in particular for resonant ones. In these cases, the optimal dates of observations are often concentrated in quite narrow time segments.Comment: 8 pages, 2 figures, no tables, Accepted to MNRA

    Variability of surface flows on the Sun and the implications for exoplanet detection

    Get PDF
    The published Mount Wilson Doppler-shift measurements of the solar velocity field taken in 1967--1982 are revisited with a more accurate model, which includes two terms representing the meridional flow and three terms corresponding to the convective limb shift. Integration of the recomputed data over the visible hemisphere reveals significant variability of the net radial velocity at characteristic time scales of 0.1--10 years, with a standard deviation of 1.4 \ms. This result is supported by independent published observations. The implications for exoplanet detection include reduced sensitivity of the Doppler method to Earth-like planets in the habitable zone, and an elevated probability of false detections at periods of a few to several years.Comment: Accepted in this form for publication in Ap

    Orbital structure of the GJ876 extrasolar planetary system, based on the latest Keck and HARPS radial velocity data

    Full text link
    We use full available array of radial velocity data, including recently published HARPS and Keck observatory sets, to characterize the orbital configuration of the planetary system orbiting GJ876. First, we propose and describe in detail a fast method to fit perturbed orbital configuration, based on the integration of the sensitivity equations inferred by the equations of the original NN-body problem. Further, we find that it is unsatisfactory to treat the available radial velocity data for GJ876 in the traditional white noise model, because the actual noise appears autocorrelated (and demonstrates non-white frequency spectrum). The time scale of this correlation is about a few days, and the contribution of the correlated noise is about 2 m/s (i.e., similar to the level of internal errors in the Keck data). We propose a variation of the maximum-likelihood algorithm to estimate the orbital configuration of the system, taking into account the red noise effects. We show, in particular, that the non-zero orbital eccentricity of the innermost planet \emph{d}, obtained in previous studies, is likely a result of misinterpreted red noise in the data. In addition to offsets in some orbital parameters, the red noise also makes the fit uncertainties systematically underestimated (while they are treated in the traditional white noise model). Also, we show that the orbital eccentricity of the outermost planet is actually ill-determined, although bounded by 0.2\sim 0.2. Finally, we investigate possible orbital non-coplanarity of the system, and limit the mutual inclination between the planets \emph{b} and \emph{c} orbits by 5155^\circ-15^\circ, depending on the angular position of the mutual orbital nodes.Comment: 36 pages, 11 figures, 3 tables; Accepted to Celestial Mechanics and Dynamical Astronom

    Substellar companions and isolated planetary mass objects from protostellar disc fragmentation

    Full text link
    Self-gravitating protostellar discs are unstable to fragmentation if the gas can cool on a time scale that is short compared to the orbital period. We use a combination of hydrodynamic simulations and N-body orbit integrations to study the long term evolution of a fragmenting disc with an initial mass ratio to the star of M_disc/M_star = 0.1. For a disc which is initially unstable across a range of radii, a combination of collapse and subsequent accretion yields substellar objects with a spectrum of masses extending (for a Solar mass star) up to ~0.01 M_sun. Subsequent gravitational evolution ejects most of the lower mass objects within a few million years, leaving a small number of very massive planets or brown dwarfs in eccentric orbits at moderately small radii. Based on these results, systems such as HD 168443 -- in which the companions are close to or beyond the deuterium burning limit -- appear to be the best candidates to have formed via gravitational instability. If massive substellar companions originate from disc fragmentation, while lower-mass planetary companions originate from core accretion, the metallicity distribution of stars which host massive substellar companions at radii of ~1 au should differ from that of stars with lower mass planetary companions.Comment: 5 pages, accepted for publication in MNRA

    A 1.1 to 1.9 GHz SETI Survey of the Kepler Field: I. A Search for Narrow-band Emission from Select Targets

    Get PDF
    We present a targeted search for narrow-band (< 5 Hz) drifting sinusoidal radio emission from 86 stars in the Kepler field hosting confirmed or candidate exoplanets. Radio emission less than 5 Hz in spectral extent is currently known to only arise from artificial sources. The stars searched were chosen based on the properties of their putative exoplanets, including stars hosting candidates with 380 K > T_eq > 230 K, stars with 5 or more detected candidates or stars with a super-Earth (R_p 50 day orbit. Baseband voltage data across the entire band between 1.1 and 1.9 GHz were recorded at the Robert C. Byrd Green Bank Telescope between Feb--Apr 2011 and subsequently searched offline. No signals of extraterrestrial origin were found. We estimate that fewer than ~1% of transiting exoplanet systems host technological civilizations that are radio loud in narrow-band emission between 1-2 GHz at an equivalent isotropically radiated power (EIRP) of ~1.5 x 10^21 erg s^-1, approximately eight times the peak EIRP of the Arecibo Planetary Radar, and we limit the the number of 1-2 GHz narrow-band-radio-loud Kardashev type II civilizations in the Milky Way to be < 10^-6 M_solar^-1. Here we describe our observations, data reduction procedures and results.Comment: Accepted to the Astrophysical Journa

    Giant Planet Migration through the Action of Disk Torques and Planet Scattering

    Full text link
    This paper presents a parametric study of giant planet migration through the combined action of disk torques and planet-planet scattering. The torques exerted on planets during Type II migration in circumstellar disks readily decrease the semi-major axes, whereas scattering between planets increases the orbital eccentricities. This paper presents a parametric exploration of the possible parameter space for this migration scenario using two (initial) planetary mass distributions and a range of values for the time scale of eccentricity damping (due to the disk). For each class of systems, many realizations of the simulations are performed in order to determine the distributions of the resulting orbital elements of the surviving planets; this paper presents the results of 8500 numerical experiments. Our goal is to study the physics of this particular migration mechanism and to test it against observations of extrasolar planets. The action of disk torques and planet-planet scattering results in a distribution of final orbital elements that fills the a-e plane, in rough agreement with the orbital elements of observed extrasolar planets. In addition to specifying the orbital elements, we characterize this migration mechanism by finding the percentages of ejected and accreted planets, the number of collisions, the dependence of outcomes on planetary masses, the time spent in 2:1 and 3:1 resonances, and the effects of the planetary IMF. We also determine the distribution of inclination angles of surviving planets and the distribution of ejection speeds for exiled planets.Comment: 46 pages including 15 figures; accepted to ICARU

    Time-Varying Potassium in High-Resolution Spectra of the Type Ia Supernova 2014J

    Get PDF
    We present a time series of the highest resolution spectra yet published for the nearby Type Ia supernova (SN) 2014J in M82. They were obtained at 11 epochs over 33 days around peak brightness with the Levy Spectrograph (resolution R~110,000) on the 2.4m Automated Planet Finder telescope at Lick Observatory. We identify multiple Na I D and K I absorption features, as well as absorption by Ca I H & K and several of the more common diffuse interstellar bands (DIBs). We see no evolution in any component of Na I D, Ca I, or in the DIBs, but do establish the dissipation/weakening of the two most blueshifted components of K I. We present several potential physical explanations, finding the most plausible to be photoionization of circumstellar material, and discuss the implications of our results with respect to the progenitor scenario of SN 2014J.Comment: 11 pages, 8 figures, 3 tables, submitted to Ap
    corecore