103 research outputs found

    Rapid recovery of postnivolumab vemurafenib-induced Drug Rash with Eosinophilia and Systemic Symptoms (DRESS) syndrome after tocilizumab and infliximab administration

    Get PDF
    Background Immune checkpoint inhibitors such as nivolumab and targeted BRAF inhibitors have dramatically altered the treatment outcomes of metastatic melanoma over the past few years. Skin toxicity is the most common adverse event (AE) related to the commonly used BRAF inhibitor vemurafenib, affecting more than 90% of patients. Vemurafenib-related severe AEs with early onset are reported in patients who were previously treated with anti-programmed cell death-1 (anti PD-1) antibodies. A prolonged administration of systemic steroids is the firstline treatment of severe or life-threatening AEs. We report the case of a woman suffering from vemurafenib-related severe, rapidly worsening Drug Rash with Eosinophilia and Systemic Symptoms (DRESS) syndrome, resolved in a few hours after single-dose administration of a combination of TNF-α antagonist infliximab with interleukin (IL)-6 receptor antagonist tocilizumab. Case presentation A 41-year-old woman treated with single-agent nivolumab presented with a melanoma progression. Biopsy samples were revised, revealing a BRAF V600E mutation. The patient was started on vemurafenib and cobimetinib treatment only 10 days after the last administration of nivolumab. On the third day of anti-BRAF therapy, profound lymphopenia was detected, and maculopapular eruption appeared afterward. Subsequently, the clinical conditions deteriorated further, and the woman was admitted on an emergency basis with high fever, respiratory and cardiocirculatory failure, diffuse rash, generalized edema, and lymphadenopathy. Diagnosis of DRESS syndrome with overexpressed capillary leakage was made. A single dose of tocilizumab was administered with an improvement of cardiocirculatory and renal function in a few hours. Because of worsening of liver function, skin lesions and mucositis, a single dose of infliximab was prescribed, and dramatic improvement was noted over the next 24 hours. Dabrafenib and trametinib were initiated, and coinciding with washout of infliximab from the patient’s blood, the drug toxicity recurred. Conclusion Anti-IL-6 and anti-TNF-α target treatment of very severe AEs may afford an immediate resolution of potentially life-threatening symptoms and reduce the duration and the costs of hospitalization. Maintenance of therapeutic infliximab blood concentrations permits an early switch to dabrafenib after vemurafenib-related AEs

    Effetto di composti isoprenoidi sul fenotipo infiammatorio del difetto di mevalonato chinasi (MKD)

    Get PDF
    2008/2009Introduzione Il difetto di mevalonato chinasi (MKD), è una rara patologia autosomica recessiva, dovuta a mutazioni a carico del gene MVK, che codifica per la mevalonato-chinasi (MK), enzima chiave del metabolismo del colesterolo e degli isoprenoidi, la cui attività è ridotta -parzialmente (sindrome da Iper-IgD, HIDS) o in modo significativo (Mevalonico aciduria, MA). Tale patologia appartiene alla famiglia delle sindromi autoinfiammatorie caratterizzate da febbri periodiche (o ricorrenti) in cui ci sono dei disordini sistemici dell’organismo caratterizzati dalla comparsa di un’infiammazione spontanea non apparentemente attribuibile ad alcun evento esogeno (infezione microbica) o ad una patologia già presente (neoplasia, etc). Nel modello autoinfiammatorio della MKD non è ancora chiaro come il difetto a carico del gene MVK possa essere responsabile degli aspetti infiammatori della malattia stessa anche se la teoria più accreditata indica che la diminuzione dei prodotti finali isoprenoidi possa spiegare il fenotipo infiammatorio, tanto che recentemente è stato dimostrato che il blocco della via del mevalonato e la conseguente diminuzione di isoprenoidi induce elevata secrezione di IL-1β (marker specifico dell’indice di infiammazione per l’MKD) mediante l’auto-processamento della caspasi-1. Ad oggi l’MKD risulta orfana di una terapia eziologia specifica. Scopo Gli scopi principali di questa tesi di dottorato sono stati i seguenti: I. La costruzione di un modello cellulare e murino della malattia che riproducesse il fenotipo infiammatorio tipico dell’MKD II. Valutazione di diversi interventi farmacologici su tali modelli malattia. Materiali e Metodi La parte di lavoro svolto in vivo si è basata prima su una linea cellulare murina (Raw 264.7) poi su monociti umani di donatori ed infine su monociti di pazienti di MKD; mentre gli studi condotti in vivo si sono avvalsi di topi Balb/c. Il blocco della via metabolica del mevalonato è stato realizzato con 2 classi di inibitori : gli aminobifosfonati e la statine. I principali interventi farmacologici valutati sono stati gli isoprenoidi naturali (NEIs)(geraniolo, farnesolo, geranilgeraniolo, mentolo) e gli inibitori della farnesiltransferasi (FTIs)(Manumicina A, Tipifarnib, Lonafarnib). Risultati I. L’utilzzo dell’aminobifosfonato (alendronato) e/o della statina (lovastatina) seguiti da un stimolo pro-flogogeno quale LPS o MDP, riproduce sia in vivo sia in vitro il modello malattia dell’MKD. II. Gli NEIs parimenti agli FTIs risultano essere efficaci nel reinvertire lo stato infiammatorio indotto nei modelli malattia. In particolare, in alcuni casi, si può riscontrare anche un loro effetto sinergico che aumenta la capacità anti-infiammatoria dei singoli. Conclusioni e prospettive future I risultati, fino ad oggi ottenuti, risultano molto promettenti nell’inquadrare gli isoprenoidi e gli inibitori della farnesil transferasi come dei validi interventi farmacologici nella cura dell’MKD. Nel prossimo futuro ci riproponiamo di approfondire lo studio di questi composti e di valutare un loro impiego per la cura e la prevenzione dei danni neurologici caratteristici della forma più grave della MKD, ossia della mevalonico aciduria.XXII Cicl

    Letter to the Editor: Acute Effects of Intravenous Administration of Pamidronate in Patients with Osteoporosis

    Get PDF
    We read the interesting article “Acute Effects of Intravenous Administration of Pamidronate in Patients with Osteoporosis” in the Journal of Korean Medical Science by Lim et al. (1). We would like to comment and compare these data to a study recently published by our research group (2). The two studies had different initial aims, but still they share the same results in determining the modulatory effect of inflammation of aminobisphosphonates, such as pamidronate. The pamidronate belongs to the family of aminobisphosphonates (N-BPs), currently the major class of drugs used for the treatment of osteoporosis and other diseases characterized by increased bone resorption. The immune modulation exerted by pamidronate has not yet fully been understood (3). In vitro experiments have shown an anti-inflammatory effect of this N-BP; (4, 5) as well as a pro-inflammatory one (6, 7). Moreover contrasting results were obtained when pamidronate was used for the treatment of different inflammatory or immunologic diseases, such as rheumatoid arthritis (8,9) or systemic sclerosis. The aminobiphosphonates act on farnesylpyrophosphate synthase (FPPS) and inhibit the mevalonate pathway, the latter being responsible for production of cholesterol and isoprenoid lipids. In particular we can hypothesize that the inflammatory phenotype is due to lack of enzymes downstream the FPPS, and in particular the lack of geranylgeranyl-pyrophosphate (GGPP) could be associated to the activation of caspase-1 and the high IL-1β release. Lim et al. (1) emphasized that in vivo infusion of pamidronate at a therapeutic dose of 30 mg increased production of two inflammatory cytokines, IL-6 and TNF-α in serum. The increase is an acute effect after intravenous injection (1). Recently, our group demonstrated that pamidronate is able to increase the sensitivity to bacterial compounds both in the murine macrophagic cell line (Raw 264.7) and in Balb/c mice, by an incremental release of IL1β. These findings are in agreement with published data concerning inflammatory modulation in alendronate treated-mice (2). Moreover the effect of pamidronate does not depend on its concentration, whereas it may be involved in the increase of susceptibility to pro-inflammatory compounds such as muramildipeptide or lipopolysaccaride (2). In summary, we agree with the study by Lim et al. (1) and we emphasize the pivotal role of pamidronate in the modulation of inflammatory response

    Repositioning Of Tak-475 In Mevalonate Kinase Disease: Translating Theory Into Practice

    Get PDF
    Mevalonate Kinase Deficiency (MKD, OMIM #610377) is a rare autosomal recessive metabolic and inflammatory disease. In MKD, defective function of the enzyme mevalonate kinase (MK), due to a mutation in the MVK gene, leads to the shortage of mevalonate-derived intermediates, which results in unbalanced prenylation of proteins and altered metabolism of sterols. These defects lead to a complex multisystem inflammatory and metabolic syndrome. Although biologic therapies aimed at blocking the inflammatory cytokine interleukin-1 (IL-1) can significantly reduce inflammation, they cannot completely control the clinical symptoms that affects the nervous system. For this reason, MKD can still be considered an orphan drug disease. Cellular models for MKD can be obtained by biochemical inhibition of mevalonate-derived isoprenoids. Of note, these cells present an exaggerated response to inflammatory stimuli that can be reduced by treatment with zaragozic acid, an inhibitor of squalene synthase (SQS) able to increase the availability of isoprenoids intermediates upstream the enzymatic block. A similar action might be obtained by lapaquistat acetate (TAK-475, Takeda), a drug that underwent extensive clinical trials as a cholesterol lowering agent 10 years ago, with a good safety profile. Here we describe the preclinical evidence supporting the possible repositioning of TAK-475 from its originally intended use to the treatment of MKD and discuss its potential to modulate the mevalonate pathway in inflammatory diseases

    Defibrotide impact on the acute GVHD disease incidence in pediatric hematopoietic stem cell transplant recipients

    Get PDF
    Despite advances in acute graft-versus-host disease (aGVHD) prophylaxis, current pharmacological approaches fail to prevent aGVHD. The protective effect of defibrotide on GVHD incidence and GVHD-free survival has not been sufficiently studied. 91 pediatric patients included in this retrospective study were divided into two groups based on defibrotide use. We compared the incidence of aGVHD and chronic GVHD-free survival between the defibrotide and control groups. The incidence and severity of aGVHD were significantly lower in patients who received defibrotide prophylactic administration than in the control group. This improvement was observed in the liver and intestinal aGVHD. No defibrotide prophylaxis benefit was observed in the prevention of chronic GVHD. The pro-inflammatory cytokine levels were significantly higher in the control group. Our findings suggest that prophylactic administration of defibrotide in pediatric patients significantly reduces the incidence and severity of aGVHD, with a modification of cytokine pattern, both strongly coherent with the protective drug's action. This evidence adds to pediatric retrospective studies and preclinical data suggesting a possible defibrotide role in this setting

    Inflammatory bowel disease and patterns of volatile organic compounds in the exhaled breath of children: A case-control study using Ion Molecule Reaction-Mass Spectrometry

    Get PDF
    Inflammatory bowel diseases (IBD) profoundly affect quality of life and have been gradually increasing in incidence, prevalence and severity in many areas of the world, and in children in particular. Patients with suspected IBD require careful history and clinical examination, while definitive diagnosis relies on endoscopic and histological findings. The aim of the present study was to investigate whether the alveolar air of pediatric patients with IBD presents a specific volatile organic compounds' (VOCs) pattern when compared to controls. Patients 10-17 years of age, were divided into four groups: Crohn's disease (CD), ulcerative colitis (UC), controls with gastrointestinal symptomatology, and surgical controls with no evidence of gastrointestinal problems. Alveolar breath was analyzed by ion molecule reaction mass spectrometry. Four models were built starting from 81 molecules plus the age of subjects as independent variables, adopting a penalizing LASSO logistic regression approach: 1) IBDs vs. controls, finally based on 18 VOCs plus age (sensitivity = 95%, specificity = 69%, AUC = 0.925); 2) CD vs. UC, finally based on 13 VOCs plus age (sensitivity = 94%, specificity = 76%, AUC = 0.934); 3) IBDs vs. gastroenterological controls, finally based on 15 VOCs plus age (sensitivity = 94%, specificity = 65%, AUC = 0.918); 4) IBDs vs. controls, built starting from the 21 directly or indirectly calibrated molecules only, and finally based on 12 VOCs plus age (sensitivity = 94%, specificity = 71%, AUC = 0.888). The molecules identified by the models were carefully studied in relation to the concerned outcomes. This study, with the creation of models based on VOCs profiles, precise instrumentation and advanced statistical methods, can contribute to the development of new non-invasive, fast and relatively inexpensive diagnostic tools, with high sensitivity and specificity. It also represents a crucial step towards gaining further insights on the etiology of IBD through the analysis of specific molecules which are the expression of the particular metabolism that characterizes these patients

    Standard treatment–refractory cytomegalovirus encephalitis unmasked by immune reconstitution inflammatory syndrome and successfully treated with virus‐specific hyperimmune globulin

    Get PDF
    Objectives Cytomegalovirus (CMV)‐related encephalitis is a rare but potentially life‐threatening complication of CMV infection in immunocompromised patients. The high mortality rate is associated with deficient immune system reconstitution after hematopoietic stem cell transplant (HSCT) and poor bioavailability of antiviral drugs in cerebrospinal fluid (CSF). CMV‐related central nervous system (CNS) infection may occur with aspecific symptoms, without evidence of either blood viral load or magnetic resonance imaging (MRI) signs of encephalitis. Methods Here, we describe a 10‐year‐old girl who underwent an allogeneic HSCT and subsequently developed CMV encephalitis. Because of the absence of CMV antigen in the blood, the diagnosis of encephalitis was proposed only after a delay, following the onset of immune reconstitution inflammatory syndrome (IRIS). Two months of combined dual antiviral therapy with ganciclovir and foscarnet proved ineffective against CMV and caused significant bone marrow and renal toxicity. To avoid further toxicity, the girl was given daily treatment with CMV‐hyperimmune globulins alone. Results After three weeks, the CSF viral load dropped significantly and was undetectable within three more weeks. In the meantime, the renal impairment resolved, and there was a complete bone marrow recovery. Conclusion We suggest that this patient succeeded in achieving CMV CSF clearance with high dose of CMV‐hyperimmune globulin, given alone, because of the ability of immunoglobulins to penetrate the blood–brain barrier (BBB)

    Post-Irradiation Hyperamylasemia Is a Prognostic Marker for Allogeneic Hematopoietic Stem Cell Transplantation Outcomes in Pediatric Population: A Retrospective Single-Centre Cohort Analysis

    Get PDF
    Background: Total body irradiation (TBI) is a mandatory step for patients with acute lymphoblastic leukemia (ALL), undergoing allogeneic hematopoietic stem cell transplantation (HSCT). In the past, amylases have been reported to be a possible sign of TBI toxicity. We investigated the relationship between total amylases (TA) and transplant-related outcomes in pediatric recipients. Methods: We retrospectively analyzed the medical records of all the patients who underwent allogeneic HSCT between January 2000 and November 2019. The inclusion criteria were the following: recipient's age between 2 and 18, diagnosis of ALL, no previous transplantation, and use of TBI-based conditioning. The serum total amylase and pancreatic amylase were evaluated before, during, and after transplantation. Cytokines and chemokines assays were retrospectively performed. Results: 78 patients fulfilled the inclusion criteria. Fifty-seven patients were treated with fractionated TBI, and 21 with a single-dose regimen. The overall survival (OS) was 62.8%. Elevated values of TA were detected in 71 patients (91%). The TA were excellent in predicting the OS (AUC = 0.773; 95% CI = 0.66-0.86; p < 0.001). TA values below 374 U/L were correlated with a higher OS. The highest mean TA values (673 U/L) were associated with a high disease-progression mortality rate. The TA showed a high predictive performance for disease progression-related death (AUC = 0.865; 95% CI = 0.77-0.93; p < 0.0001). Elevated TA values were also connected with significantly higher levels of proinflammatory cytokines, such as TNF-alpha, IL-6, and RANTES (p < 0.001). Conclusions: this study shows that TA is a valuable predictor of post-transplant OS and increased risk of leukemia relapse

    Neuronal dysfunction associated with cholesterol deregulation

    Get PDF
    Cholesterol metabolism is crucial for cells and, in particular, its biosynthesis in the central nervous system occurs in situ, and its deregulation involves morphological changes that cause functional variations and trigger programmed cell death. The pathogenesis of rare diseases, such as Mevalonate Kinase Deficiency or Smith–Lemli–Opitz Syndrome, arises due to enzymatic defects in the cholesterol metabolic pathways, resulting in a shortage of downstream products. The most severe clinical manifestations of these diseases appear as neurological defects. Expanding the knowledge of this biological mechanism will be useful for identifying potential targets and preventing neuronal damage. Several studies have demonstrated that deregulation of the cholesterol pathway induces mitochondrial dysfunction as the result of respiratory chain damage. We set out to determine whether mitochondrial damage may be prevented by using protective mitochondria-targeted compounds, such as MitoQ, in a neuronal cell line treated with a statin to induce a biochemical block of the cholesterol pathway. Evidence from the literature suggests that mitochondria play a crucial role in the apoptotic mechanism secondary to blocking the cholesterol pathway. Our study shows that MitoQ, administered as a preventive agent, could counteract the cell damage induced by statins in the early stages, but its protective role fades over time

    Type I interferon-mediated autoinflammation due to DNase II deficiency

    Get PDF
    Microbial nucleic acid recognition serves as the major stimulus to an antiviral response, implying a requirement to limit the misrepresentation of self nucleic acids as non-self and the induction of autoinflammation. By systematic screening using a panel of interferon-stimulated genes we identify two siblings and a singleton variably demonstrating severe neonatal anemia, membranoproliferative glomerulonephritis, liver fibrosis, deforming arthropathy and increased anti-DNA antibodies. In both families we identify biallelic mutations in DNASE2, associated with a loss of DNase II endonuclease activity. We record increased interferon alpha protein levels using digital ELISA, enhanced interferon signaling by RNA-Seq analysis and constitutive upregulation of phosphorylated STAT1 and STAT3 in patient lymphocytes and monocytes. A hematological disease transcriptomic signature and increased numbers of erythroblasts are recorded in patient peripheral blood, suggesting that interferon might have a particular effect on hematopoiesis. These data define a type I interferonopathy due to DNase II deficiency in humans
    corecore