364 research outputs found

    Timescales of Massive Human Entrainment

    Get PDF
    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents entrained to each other and to external events. In this paper, we extend concepts of entrainment to the dynamics of human collective attention. We conducted a detailed investigation of the unfolding of human entrainment - as expressed by the content and patterns of hundreds of thousands of messages on Twitter - during the 2012 US presidential debates. By time locking these data sources, we quantify the impact of the unfolding debate on human attention. We show that collective social behavior covaries second-by-second to the interactional dynamics of the debates: A candidate speaking induces rapid increases in mentions of his name on social media and decreases in mentions of the other candidate. Moreover, interruptions by an interlocutor increase the attention received. We also highlight a distinct time scale for the impact of salient moments in the debate: Mentions in social media start within 5-10 seconds after the moment; peak at approximately one minute; and slowly decay in a consistent fashion across well-known events during the debates. Finally, we show that public attention after an initial burst slowly decays through the course of the debates. Thus we demonstrate that large-scale human entrainment may hold across a number of distinct scales, in an exquisitely time-locked fashion. The methods and results pave the way for careful study of the dynamics and mechanisms of large-scale human entrainment.Comment: 20 pages, 7 figures, 6 tables, 4 supplementary figures. 2nd version revised according to peer reviewers' comments: more detailed explanation of the methods, and grounding of the hypothese

    Molecular dynamics simulations reveal that AEDANS is an inert fluorescent probe for the study of membrane proteins

    Get PDF
    Computer simulations were carried out of a number of AEDANS-labeled single cysteine mutants of a small reference membrane protein, M13 major coat protein, covering 60% of its primary sequence. M13 major coat protein is a single membrane-spanning, α-helical membrane protein with a relatively large water-exposed region in the N-terminus. In 10-ns molecular dynamics simulations, we analyze the behavior of the AEDANS label and the native tryptophan, which were used as acceptor and donor in previous FRET experiments. The results indicate that AEDANS is a relatively inert environmental probe that can move unhindered through the lipid membrane when attached to a membrane protein

    Conformational studies of peptides representing a segment of TM7 from H+-VO-ATPase in SDS micelles

    Get PDF
    The conformation of a transmembrane peptide, sMTM7, encompassing the cytoplasmic hemi-channel domain of the seventh transmembrane section of subunit a from V-ATPase from Saccharomyces cerevisiae solubilized in SDS solutions was studied by circular dichroism (CD) spectroscopy and fluorescence spectroscopy of the single tryptophan residue of this peptide. The results show that the peptide adopts an α-helical conformation or aggregated β-sheet depending on the peptide-to-SDS ratio used. The results are compared with published data about a longer version of the peptide (i.e., MTM7). It is concluded that the bulky, positively charged arginine residue located in the center of both peptides has a destabilizing effect on the helical conformation of the SDS-solubilized peptides, leading to β-sheet formation and subsequent aggregation

    Imaging of programmed cell death in arrhythmogenic right ventricle cardiomyopathy/dysplasia

    Get PDF
    Arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D) is a myocardial disease that predominantly affects the right ventricle (RV). Its hallmark feature is fibrofatty replacement of the RV myocardium. Apoptosis in ARVC/D has been proposed as an important process that mediates the slow, ongoing loss of heart muscle cells which is followed by ventricular dysfunction. We aimed to establish whether cardiac apoptosis can be assessed noninvasively in patients with ARVC/D. Six patients fulfilling the ARVC/D criteria were studied. Regional myocardial apoptosis was assessed with (99m)Tc-annexin V scintigraphy. Overall, the RV wall showed a higher (99m)Tc-annexin V signal than the left ventricular wall (p = 0.049) and the interventricular septum (p = 0.026). However, significantly increased uptake of (99m)Tc-annexin V in the RV was present in only three of the six ARVC/D patients (p = 0.001, compared to (99m)Tc-annexin V uptake in the RV wall of the other three patients). Our results are suggestive of a chamber-specific apoptotic process. Although the role of apoptosis in ARVC/D is unsolved, the ability to assess apoptosis noninvasively may aid in the diagnostic course. In addition, the ability to detect apoptosis in vivo with (99m)Tc-annexin V scintigraphy might allow individual monitoring of disease progression and response to diverse treatments aimed at counteracting ARVC/D progressio

    Profiling of dynamics in protein–lipid–water systems: a time-resolved fluorescence study of a model membrane protein with the label BADAN at specific membrane depths

    Get PDF
    Profiles of lipid-water bilayer dynamics were determined from picosecond time-resolved fluorescence spectra of membrane-embedded BADAN-labeled M13 coat protein. For this purpose, the protein was labeled at seven key positions. This places the label at well-defined locations from the water phase to the center of the hydrophobic acyl chain region of a phospholipid model membrane, providing us with a nanoscale ruler to map membranes. Analysis of the time-resolved fluorescence spectroscopic data provides the characteristic time constant for the twisting motion of the BADAN label, which is sensitive to the local flexibility of the protein–lipid environment. In addition, we obtain information about the mobility of water molecules at the membrane–water interface. The results provide an unprecedented nanoscale profiling of the dynamics and distribution of water in membrane systems. This information gives clear evidence that the actual barrier of membranes for ions and aqueous solvents is located at the region of carbonyl groups of the acyl chains

    Bioengineering of the plant culture of Capsicum frutescens with vanillin synthase gene for the production of vanillin

    Get PDF
    Production of vanillin by bioengineering has gained popularity due to consumer demand towards vanillin produced by biological systems. Natural vanillin from vanilla beans is very expensive to produce compared to its synthetic counterpart. Current bioengineering works mainly involve microbial biotechnology. Therefore, alternative means to the current approaches are constantly being explored. This work describes the use of vanillin synthase (VpVAN), to bioconvert ferulic acid to vanillin in a plant system. The VpVAN enzyme had been shown to directly convert ferulic acid and its glucoside into vanillin and its glucoside, respectively. As the ferulic acid precursor and vanillin were found to be the intermediates in the phenylpropanoid biosynthetic pathway of Capsicum species, this work serves as a proof-of-concept for vanillin production using Capsicum frutescens (C. frutescens or hot chili pepper). The cells of C. frutescens were genetically transformed with a codon optimized VpVAN gene via biolistics. Transformed explants were selected and regenerated into callus. Successful integration of the gene cassette into the plant genome was confirmed by polymerase chain reaction. High performance liquid chromatography was used to quantify the phenolic compounds detected in the callus tissues. The vanillin content of transformed calli was 0.057% compared to 0.0003% in untransformed calli

    Viruses: incredible nanomachines. New advances with filamentous phages

    Get PDF
    During recent decades, bacteriophages have been at the cutting edge of new developments in molecular biology, biophysics, and, more recently, bionanotechnology. In particular filamentous viruses, for example bacteriophage M13, have a virion architecture that enables precision building of ordered and defect-free two and three-dimensional structures on a nanometre scale. This could not have been possible without detailed knowledge of coat protein structure and dynamics during the virus reproduction cycle. The results of the spectroscopic studies conducted in our group compellingly demonstrate a critical role of membrane embedment of the protein both during infectious entry of the virus into the host cell and during assembly of the new virion in the host membrane. The protein is effectively embedded in the membrane by a strong C-terminal interfacial anchor, which together with a simple tilt mechanism and a subtle structural adjustment of the extreme end of its N terminus provides favourable thermodynamical association of the protein in the lipid bilayer. This basic physicochemical rule cannot be violated and any new bionanotechnology that will emerge from bacteriophage M13 should take this into account

    Adherence to physical activity recommendations and the influence of socio-demographic correlates – a population-based cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Current physical activity guidelines acknowledge the importance of total health enhancing physical activity (HEPA) compared to leisure time physical activity or exercise alone. Assessing total HEPA may result in different levels of adherence to these as well as the strength and/or direction of associations observed between total HEPA and socio-demographic correlates. The aim of this study was to estimate the proportion of the population adhering to the recommendation of at least 30 minutes of HEPA on most days, and to examine the influences of socio-demographic correlates on reaching this recommendation.</p> <p>Methods</p> <p>Swedish adults aged 18–74 years (n = 1470) were categorized, based on population data obtained using the IPAQ, into low, moderately and highly physically active categories. Independent associations between the physical activity categories and socio-demographic correlates were studied using a multinomial logistic regression.</p> <p>Results</p> <p>Of the subjects, 63% (95% CI: 60.5–65.4) adhered to the HEPA recommendation. Most likely to reach the highly physical active category were those aged < 35 years (OR = 1.8; 95% CI: 1.1–3.3), living in small towns (OR = 1.8; 95% CI: 1.1–2.7) and villages (OR = 2.4; 95% CI: 1.6–3.7), having a BMI between 25.0–29.9 kg/m<sup>2 </sup>(OR = 2.7; 95% CI: 1.4–5.3) having a BMI < 25 kg/m<sup>2 </sup>(OR = 2.5; 95% CI: 1.3–4.9), or having very good (OR = 2.1; 95% CI: 1.3–3.3) or excellent self-perceived health (OR = 4.1; 95% CI: 2.4–6.8). Less likely to reach the high category were women (OR = 0.6; 95% CI: 0.5–0.9) and those with a university degree (OR = 0.5; 95% CI: 0.3–0.9). Similar, but less pronounced associations were observed for the moderate group. Gender-specific patterns were also observed.</p> <p>Conclusion</p> <p>Almost two-thirds of the Swedish adult population adhered to the physical activity recommendation. Due to a large diversity in levels of physical activity among population subgroups, social-ecological approaches to physical activity promotion may be warranted.</p
    corecore