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Abstract  

Production of vanillin by bioengineering has gained popularity due to consumer 

demand towards vanillin produced by biological systems. Natural vanillin from 

vanilla beans is very expensive to produce compared to its synthetic counterpart. 

Current bioengineering works mainly involve microbial biotechnology. Therefore, 

alternative means to the current approaches are constantly being explored. This work 

describes the use of vanillin synthase (VpVAN), to bioconvert ferulic acid to vanillin 

in a plant system. The VpVAN enzyme had been shown to directly convert ferulic 

acid and its glucoside into vanillin and its glucoside, respectively. As the ferulic acid 

precursor and vanillin were found to be the intermediates in the phenylpropanoid 

biosynthetic pathway of Capsicum species, this work serves as a proof-of-concept for 

vanillin production using Capsicum frutescens (C. frutescens or hot chili pepper). The 

cells of C. frutescens were genetically transformed with a codon optimized VpVAN 

gene via biolistics. Transformed explants were selected and regenerated into callus. 

Successful integration of the gene cassette into the plant genome was confirmed by 

polymerase chain reaction. High performance liquid chromatography was used to 

quantify the phenolic compounds detected in the callus tissues. The vanillin content of 

transformed calli was 0.057% compared to 0.0003% in untransformed calli.     
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1. Introduction 

Vanilla is one of the most important flavors in the food and beverage industries, and it 

is also used in perfumery and pharmaceutical products. Natural vanilla extract from 

Vanilla planifolia (V. planifolia) or Vanilla tahitensis is made up of over 200 

components, the major compound being vanillin (4-hydroxy-3-

methoxybenzaldehyde). Other compounds include vanillic acid, p-

hydroxybenzaldehyde, p-hydroxybenzoic acid, sugars and lipids [1]. Medically, it was 

reported that vanillin is able to suppress the proliferation of cancer cells and prevent 

chemically and physically induced mutagenesis [2]. It was also reported that vanillin 

exhibits antimicrobial properties [3].  

Despite the usefulness of vanilla or more specifically, vanillin, natural vanillin is 

very expensive to produce. This is largely attributed to the laborious and time-

consuming process to extract vanillin from vanilla beans. In the market, only a small 

portion of vanilla flavoring is derived from natural vanilla beans due to the low supply 

of vanilla beans, which is often subjected to extensive price fluctuations. The market 

price of natural vanilla has recently soared from over USD 200 per kg to USD 400–

500 per kg in 2016, which is more than a ten times increase from its lowest price at 

just USD 20 per kg ten years ago [4]. Only 2000 tons of the global demand, which is 

more than 15,000 tons, is provided by vanilla beans [5]. The rest is supplied by 

synthetic vanillin produced from lignin and eugenol. Nevertheless, the market share 

of natural vanilla is believed to be not affected by their artificial counterparts due to 

the shift in demand towards food regarded as natural and organic. US and EU labeling 

regulations allow only goods produced using natural vanilla to be labeled “vanilla” 

[6,7]. In addition, bioengineered vanillin from plant tissues and microorganisms is 

still of low success because of the high cost incurred in culture fermentation and the 

requirement to optimize various culture conditions [8,9].  

Recently, the vanillin biosynthetic pathway in V. planifolia has been explored by 

Gallage and co-workers [10]. An enzyme named vanillin synthase (VpVAN) was 

found to directly convert ferulic acid and its glucoside to vanillin and its glucoside, 

respectively, based on transient expression in tobacco and stable expression in barley. 

VpVAN is a type of hydratase or lyase that shows high sequence similarity to that of 

cysteine proteinases. Besides its discovery in V. planifolia, vanillin synthase-like 

enzymes in bacteria had been reported by Pometto and Crawford [11], and by Narbad 



and Garsson [12]. Similar enzymes in fungi have also been reported by Hansen and 

co-workers [13]. The enzymes were generally referred to as aldehyde oxidase, CoA 

ligase, dehydrogenase, hydratase or reductase.  

This research explores a plant-based alternative to the current vanillin production 

systems by the heterologous expression of a VpVAN gene in callus cultures of 

Capsicum frutescens (C. frutescens) L. var. Hot Lava (chili). Ferulic acid (4-hydroxy-

3-methoxycinnamic acid) and vanillin were found to be the precursors for the 

biosynthesis of capsaicin in chili (Fig. 1) [14]. Thus, the constitutive expression of 

VpVAN could potentially enable bioconversion of endogenous ferulic acid to vanillin 

in the callus cultures of C. frutescens at a higher level compared to the untransformed 

callus. This would potentially lead to the production of natural, pure vanillin using an 

alternative bioengineered plant-based system in another food crop. 

 

2. Materials and Methods 

Construction of expression vector  

The vanillin synthase gene from Vanilla planifolia (VpVAN) was codon optimized 

according to codon usage of Nicotiana benthamiana based on the DNA coding 

sequence provided by Gallage and co-workers [10]. The gene was then commercially 

synthesized (Integrated DNA Technologies, Singapore) into a holding vector pIDT-

AMP:35Sp-VpVAN-V5. Upstream of the VpVAN gene was the cauliflower mosaic 

virus 35S promoter (35Sp), flanked by a PstI restriction site at the 5ʹ end, while 

downstream of the gene was a V5 epitope, flanked by a BamHI restriction site at the 

3ʹ end. The holding vector and the target destination vector, pcDNA6.2/V5-pL-DEST, 

were separately cleaved with PstI and BamHI restriction endonucleases. The 

linearized pcDNA vector backbone and the 35Sp-VpVAN-V5 gene cassette were 

ligated using T4 DNA ligase to produce pcDNA6.2::(35Sp-VpVAN-V5)ΔccdB (Fig. 

2). To check on the efficacy of transgene expression in the destination vector, a 

separate gene cassette containing the gene of a synthetic green fluorescence protein 

(sGFP) was cloned into the destination vector in place of the VpVAN-V5 gene cassette, 

but under the regulation of the same 35Sp promoter. The resulting pcDNA6.2::(35Sp-

sGFP)ΔccdB was delivered into explants and the expression of sGFP was observed 

using a stereo microscope (Nikon SMZ1000) with a blue light fluorescent attachment. 



Bacterial strain and growth media  

The expression vector was propagated using One Shot ccdB Survival 2 T1R 

chemically competent Escherichia coli (Invitrogen) following transformation by heat 

shock. The bacteria were cultured on Luria Bertani (LB) agar, then in LB broth 

containing 100 µg/mL ampicillin and 15 µg/mL chloramphenicol as the selective 

antibiotics. Purification of the expression vector was carried out using Hybrid-Q 

Plasmid Rapidprep kit (GeneAll) according to manufacturer’s protocol.  

Plant material  

Seeds of Capsicum frutescens L. cv. Hot Lava were surface sterilized using 70% (v/v) 

ethanol, followed by washing in sterile distilled water. They were then soaked in 20% 

(v/v) commercial Clorox (1.05% sodium hypochlorite), and were subsequently 

washed twice in sterile distilled water. The sterilized seeds were germinated on 

Murashige and Skoog (MS) agar (4.42 g/L MS basal salt, 20 g/L sucrose, and 3.5 g/L 

agar (Phytagel)) for two weeks. Hypocotyls of germinated seedlings were excised and 

incubated in the dark overnight prior to particle bombardment. 

Particle bombardment  

The expression vector was coated onto 1.6 µm gold particles by mixing of the DNA 

and the gold particles with spermidine and calcium chloride with constant vortex. 

Coated gold particles were pelleted and the resulting supernatant was removed, 

followed by washing with 70% (v/v) ethanol. Subsequently, the particles were washed 

with 100% (v/v) ethanol and were resuspended in 100% (v/v) ethanol prior to loading 

on macrocarriers. Particle bombardment was performed on the explants using a PDS-

1000/He system at 1350 psi helium pressure in a vacuum chamber at 28 mm mercury 

pressure. Three replicates of twenty explants per replicate were subjected to the 

bombardment. The target distance was set at 6 cm. Bombarded explants were then 

incubated in the dark overnight for recovery.  

Selection and regeneration of putative transformants  

After an overnight incubation, the bombarded explants were transferred to selective 

medium containing 4.42 g/L MS basal salt, 30 g/L sucrose, 3.5 g/L agar (Phytagel), 

0.1 mg/L 1-naphthaleneacetic acid (NAA), 5.0 mg/L 6-benzylaminopurine (BAP) and 

0.2 mg/L blasticidin S. The explants were incubated at 25°C in 16 hours light and 8 

hours dark photoperiod for one month. Putative transformants that survived and 



proliferated were then transferred to fresh selective medium and were incubated for 

another month. 

Isolation of plant genomic DNA  

Calli of Capsicum frutescens transformants were ground into fine powder in liquid 

nitrogen and extracted in 200 mM Tris-Cl (pH 7.5), 250 mM sodium chloride, 25 mM 

ethylenediaminetetraacetic acid (EDTA), and 0.5% (w/v) sodium dodecyl sulfate 

(SDS). Purification was done with Tris-saturated phenol, followed by the 

centrifugation at 13,000 rpm and the addition of an equal volume of chloroform–

isoamyl alcohol (24:1, v/v) to the aqueous phase. The mixture was centrifuged. The 

DNA in the aqueous phase was precipitated in 99% (v/v) isopropanol and 

subsequently, the isopropanol was removed and the DNA pellet was washed with 70% 

(v/v) ethanol. Finally, the DNA was resuspended in sterile nuclease free water.  

Confirmation of transformants by polymerase chain reaction (PCR) 

Amplification of VpVAN by PCR from the extracted genomic DNA of calli was 

performed using primers 5ʹ-AGG ACG TCT CGT ACA CCA TGG ATG GCA GCT 

AAG CTC CTC TTC-3ʹ and 5ʹ-GGT CAA AAT GAG ACG GGG ATC CGC TAG 

TGA TGG TGG TGG TGA TGC ACA GCC ACA ATG GGA TAA GAT GC-3ʹ (0.3 

µM each). The same primers were also used to verify the presence of VpVAN gene in 

genomic DNA from leaves of V. planifolia. PCR reactions were carried out using 

recombinant Taq polymerase (Invitrogen) and Taq polymerase buffer with 1.5 mM 

magnesium chloride, 0.3 mM deoxynucleotide mix (dNTPs). Thermal cycling 

conditions were: initial denaturation at 95°C for 3 min; 25 times of denaturation at 

95°C for 30 s, annealing at 62°C for 30 s, and elongation at 72°C for 1.5 min; and 

final elongation at 72°C for 5 min. Amplified DNA was separated by gel 

electrophoresis on 1% (w/v) agarose gel in 1X Tris-acetate-EDTA (TAE) buffer and 

stained using SYBR Safe DNA gel stain (Invitrogen).  

Extraction of Phenolic Compounds  

Phenolic compounds from callus cultures were extracted using maceration and 

sonication. Two grams of callus tissue was weighed and ground with 80% (v/v) 

ethanol, followed by sonication. Suspension with ethanol and sonication was repeated 

twice. All liquid extracts were collected. Extraction solvent was removed by rotary 

evaporation. Target compounds were then redissolved in 80% (v/v) methanol. 



High Performance Liquid Chromatography (HPLC)  

All callus extracts were filtered through a 0.45 µm syringe filter prior to injection into 

the HPLC system. A gradient HPLC was performed with a mobile phase ratio 

changing from 1:3 to 1:1 methanol–1% acetic acid over 15 min. Flow rate was set at 1 

mL/min. The HPLC column used was Hypersil GOLD (Thermo) C18 analytical 

column (250 × 4.6 mm ID, 5 µm particle size). Target phenolic compounds were 

detected using ultraviolet (UV) photodiode array at 260 – 325 nm wavelengths.  

 

3. Results and discussion 

Recombinant expression vector  

To examine whether the ligation product (expression vector) pcDNA6.2::(35Sp-

VpVAN-V5)ΔccdB was successfully transformed into chemically competent 

Escherichia coli, polymerase chain reaction (PCR) was performed on the bacterial 

colonies grown overnight on Luria Bertani agar containing ampicillin and 

chloramphenicol. Colonies that showed the amplification of the 1133 bp VpVAN gene 

(in Fig. S1) were selected for subculture to propagate the expression vector. 

Subsequently, the expression vector that was extracted was subjected to another PCR 

of the VpVAN gene and to cleavage by PstI and BamHI restriction endonucleases for 

further verification (in Fig. S2). The double restriction digest gave the expected DNA 

bands of 6028 bp and 1460 bp. Additionally, the expression vector was sequenced and 

the resulting reads showed up to 100% sequence identity to that of the known cDNA 

sequence of VpVAN gene (data not shown).  

Selection, regeneration and screening of plant transformants  

The particle bombardment procedure with pcDNA6.2::(35Sp-VpVAN-V5)ΔccdB 

achieved 5% transformation efficiency, whereby one out of twenty explants in each of 

the three replicates survived and proliferated into callus on the blasticidin selective 

media over two months (Fig. 3A). Explants that did not survive showed signs of 

shrinking and extensive browning with very little or no callus proliferation at all (Fig. 

3B). Separately, transformation with pcDNA6.2::(35Sp-sGFP)ΔccdB achieved 20% 

transformation efficiency and the surviving explants (Fig. 3C) showed the expression 

of sGFP (Fig. 3D). This demonstrated effective expression of the gene cassette 

transferred with the expression vector. In addition, the sGFP gene was a modified 



GFP gene with a chromophore mutation at position 65, where serine was replaced 

with threonine, to give 100-fold higher fluorescence signal compared to the original 

jellyfish GFP [15]. 

Integration of the gene cassette into the plant genome was verified by PCR of 

VpVAN after the extraction of genomic DNA from the callus tissues. The gene was 

detected in the genomic DNA of all callus samples, hence indicating successful 

integration of the gene cassette into the plant genome (Fig. 4). PCR amplification of 

VpVAN was not achieved from the genomic DNA of non-transformed C. frutescens 

callus (Fig. 5). On the other hand, genomic DNA from the leaf of V. planifolia 

showed the amplification of VpVAN, indicating the presence of native vanillin 

synthase in the vanilla plant (Fig. 5). However, the endogenous VpVAN gene in V. 

planifolia is larger in size (~2500 base pairs) compared to the cDNA sequence 

provided by Gallage and co-workers [10] (1071 base pairs). This suggests the possible 

presence of introns that contribute additional base pairs to the genomic sequence. 

Preliminary sequencing of the VpVAN PCR product from the genomic DNA of V. 

planifolia and comparison of the sequence obtained with the known cDNA sequence 

of VpVAN revealed at least an intron of 909 base pairs in length (data not shown).  

Levels of phenolic compounds in C. frutescens calli  

Four target phenolic compounds—vanillin, vanillic acid, vanillin-β-D-glucoside, and 

ferulic acid—were analyzed using high performance liquid chromatography (HPLC). 

Maximum UV absorbance for the four compounds was measured at 280 nm, 260 nm, 

270 nm, and 280 nm wavelengths, respectively. The retention times in chromatograms 

acquired for the target compounds were compared to those of the external standards 

(Fig. 6). Transformed calli produced vanillin at an average of 573.39 (±120.70) µg per 

gram tissue. This was equivalent to 0.057% of vanillin in the fresh callus. The amount 

of vanillin produced was significantly higher than that from the untransformed calli, 

which produced detectable levels of vanillin at an average of only 3.32 (±0.83) µg per 

gram tissue (0.0003%) (Fig. 7). The increase in vanillin level was 190 times. The 

VpVAN enzyme could have catalyzed the bioconversion of vanillin from endogenous 

ferulic acid as free and bound ferulic acid is one of the most abundant 

phenylpropanoids in plant tissues. Being an important molecule in the plant cell wall, 

ferulic acid is present either as free homodimers or as dehydrodimers and 

dehydrotrimers esterified with proteins or sugars [16-18]. In a study by Yahiaoui and 



co-workers [19], it was shown that the downregulation of cinnamyl alcohol 

dehydrogenase (CAD, an enzyme in lignin biosynthesis) in transgenic tobacco 

(Nicotiana tabacum) saw up to ten-fold increase in vanillin content (>4 µmol per 

gram of extracted xylem residue) compared to untransformed control. Looking at the 

capsaicinoid biosynthetic pathway, the suppression of a putative aminotransferase 

gene (pAMT) in Capsicum frutescens resulted in no vanillylamine production and 

very low levels of capsaicinoid, which is downstream of vanillin in the capsaicinoid 

biosynthetic pathway. This in turn stimulated an increase in metabolites, such as 

vanillin and vanillic acid [20]. Treatment of cell cultures of Capsicum chinense with 

200 µM salicylic acid was shown to increase the activity of phenylalanine ammonia 

lyase (PAL, a key enzyme producing cinnamic acid in the phenylpropanoid pathway) 

and subsequently increased vanillin production almost 3 times higher than untreated 

control [21-22]. 

In our studies, ferulic acid was found at low levels in transformed (1.12 ±0.32 µg 

per gram tissue) and untransformed (1.53 ±0.01 µg per gram tissue) calli. It is 

possible that most of the ferulic acid in plant tissues was esterified in cell walls rather 

than being free dimers [17-18]. As such, it would not have been released during the 

extraction process. Other than that, free ferulic acid that appeared as intermediate in 

the phenylpropanoid pathway could have been instantly degraded or converted into 

other phenolic derivatives, such as feruloyl-CoA, vanillyl-CoA, 4-hydroxy-3-

methoxyphenyl-β-hydroxypropionyl CoA, vanillic acid and vanillin, based on the 

possible routes for bioconversion of ferulic acid to vanillin [16].  

In spite of the low levels of ferulic acid detected, it is shown that the level of 

ferulic acid in transformed and untransformed tissues appeared to be similar, 

suggesting that there could be compensation of intracellular ferulic acid that was 

converted into vanillin. It is known that ferulic acid is a source of feruloyl-CoA in 

lignin biosynthesis. In a study of transgenic poplar (family Salicaceae), the 

downregulation of cinnamoyl CoA reductase (CCR, one of the key enzymes involved 

in the conversion of feruloyl-CoA from the general phenylpropanoid pathway to 

monolignols in lignin biosynthesis) resulted in a decreased flux of feruloyl-CoA to 

lignin, which in turn stimulated an increased flux of ferulic acid deposition [23-24]. In 

the case of vanillin biosynthesis, the ability of VpVAN to release ferulic acid from 

plant cell wall material is still unknown. Hence, the biosynthesis of vanillin by 

VpVAN could have taken place via ferulic acid and feruloyl-CoA in the 



phenylpropanoid pathway. The diversion of ferulic acid for the synthesis of vanillin 

could have caused a reduced flux to lignin, thereby inducing a compensation of ferulic 

acid in return.  

VpVAN is able to catalyze the synthesis of vanillin and its glucoside from ferulic 

acid and its glucoside, respectively, as described by Gallage and co-workers [10]. 

Therefore, the detection of significant level of vanillin-β-D-glucoside (110.32 ±11.56 

µg per gram tissue or 0.01%) as compared to the negative controls (6.63 ±7.92 µg per 

gram tissue or 0.0006%) suggests the presence of ferulic acid glucosides in the callus 

tissues that were used in the conversion by VpVAN. This could be further confirmed 

in future studies. The detectable amount of vanillic acid (89.29 ±36.31 µg per gram 

tissue or 0.009%) in transformed calli also suggests the presence of intermediary 

forms of vanillic acid glucosides and vanillic acid in the vanillin biosynthetic pathway 

in the plant tissues.  

 

4. Conclusion 

The efficacy of the gene cassette harboring the VpVAN gene and the expression vector 

was demonstrated by the constitutive expression of green fluorescence protein. Plant 

transformants were selected effectively by the blasticidin antibiotics used in the 

selective media supplemented with NAA and BAP for plant regeneration. The 

heterologous expression of the VpVAN gene in C. frutescens had resulted in almost 

200 times increase in the levels of vanillin and vanillin glucoside in transformed 

callus tissues compared to untransformed tissues. On the other hand, the endogenous 

level of ferulic acid in transformed tissues was low, which was similar to that of the 

untransformed tissues as negative controls.  
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7. Figure Captions 

Fig. 1 The pathway to capsaicin biosynthesis from two branches: (i) via CoA 

derivatives of amino acid, such as valine, contributing the fatty acid moiety; and (ii) 

via the phenylpropanoid biosynthesis, followed by steps from ferulate to 

vanillylamine and subsequently capsaicin, which is unique to Capsicum [14]. Pathway 

diagram was generated by MetaCyc (http://metacyc.org/cytoscape-

js/ovsubset.html?orgid=META&pwys=PWY-5710). 

Fig. 2 Recombinant pcDNA6.2::(35Sp-VpVAN-V5)ΔccdB expression vector cloned 

with 35Sp-VpVAN-V5 gene cassette after double restriction digest by PstI and BamHI 

endonucleases and ligation by T4 DNA ligase. The insertion of the gene cassette 

replaced a negative selectable marker, a lethal cytotoxic ccdB gene, that was 

originally present downstream of the chloramphenicol resistance gene (CmR). Non-

resistant E. coli that was transformed with recircularized (non-recombinant) 

destination vector would be killed with the expression of intact ccdB gene. The 

presence of the ampicillin resistance gene (AmpR) and the chloramphenicol resistance 

gene (CmR) allows selection of the bacterial transformants in Luria Bertani agar 

containing ampicillin and chloramphenicol to maintain the integrity of the vector. 

Plant transformants would confer resistance to blasticidin in the Murashige and Skoog 

(MS) medium with the expression of blasticidin S deaminase gene (BSD). The image 

was modified from the vector representation diagram generated using SnapGene. 

Fig. 3 Microscopy images of explants transformed with pcDNA6.2::(35Sp-VpVAN-

V5)ΔccdB that survived and proliferated into callus (A) and an explant that did not 



survive (B) on blasticidin selective medium. An explant that was transformed with 

pcDNA6.2::(35Sp-sGFP)ΔccdB (C) showed GFP expression under blue light 

fluorescence in the dark (D). Scale bar represents 1 mm. 

Fig. 4 PCR of VpVAN gene from the genomic DNA extracted from transformed calli. 

The gene was detected in all of the callus transformants, hence indicating successful 

integration of the gene cassette. M – 1kb DNA ladder; (+) – PCR positive control 

using synthesized holding vector, pIDT-AMP:35Sp-VpVAN-V5, as the template; (-) – 

no template PCR control. 

Fig. 5 PCR of VpVAN gene from the genomic DNA extracted from leaf tissue of V. 

planifolia and from callus of C. frutescens. The gene was detected in V. planifolia, but 

not in non-transformed C. frutescens. M – 1kb DNA ladder; (-) – no template PCR 

control. 

Fig. 6 HPLC chromatograms of the phenolic compounds extracted from transformed 

callus of C. frutescens. UV absorbance at 260 nm (A), 270 nm (B), 280 nm (C), and 

325 nm(D) wavelengths were measured for vanillic acid, vanillin-β-D-glucoside, 

vanillin, and ferulic acid, respectively. Retention times for compounds in 

chromatograms A–D were compared with those of the standards (E) measured at 280 

nmwavelength.  

Fig. 7 Concentrations of vanillic acid, vanillin, ferulic acid and vanillin-β-D-glucoside,  

in (i) three different callus tissues after transformation with pcDNA6.2::(35Sp-

VpVAN-V5)ΔccdB expression vector (pc-VAN), and (ii) two different callus tissues 

that were not transformed (negative). UV absorbance was detected by HPLC at 260 

nm wavelength for vanillic acid, 270 nm wavelength for vanillin-β-D-glucoside, 280 

nm wavelength for vanillin, and 325 nm wavelength for ferulic acid.  

Fig. S1 Representation of colony PCR of VpVAN gene from thirteen E. coli colonies 

transformed with pcDNA6.2::(35Sp-VpVAN-V5)ΔccdB expression vector. M – 1kb 

DNA ladder; (+) – PCR positive control using synthesized holding vector, pIDT-

AMP:35Sp-VpVAN-V5, as the template; (-) – no template PCR control. 

Fig. S2 (i) PCR of VpVAN gene from pcDNA6.2::(35Sp-VpVAN-V5)ΔccdB 

expression vector extracted from E. coli, and (ii) DNA profile of the extracted 

expression vector after double restriction digest with PstI and BamHI restriction 



endonucleases (REs). M – 1kb DNA ladder; (+) – PCR positive control using 

synthesized holding vector, pIDT-AMP:35Sp-VpVAN-V5, as the template; (-) – no 

template PCR control. 

 





Figure 2 Recombinant pcDNA6.2::(35Sp-VpVAN-V5)ΔccdB expression vector cloned with 

35Sp-VpVAN-V5 gene cassette after double restriction digest by PstI and BamHI

endonucleases and ligation by T4 DNA ligase. The insertion of the gene cassette replaced 

a negative selectable marker, a lethal cytotoxic ccdB gene, that was originally present 

downstream of the chloramphenicol resistance gene (CmR). Non-resistant E. coli that was 

transformed with recircularized (non-recombinant) destination vector would be killed with 

the expression of intact ccdB gene. The presence of the ampicillin resistance gene (AmpR) 

and the chloramphenicol resistance gene (CmR) allows selection of the bacterial 

transformants in Luria Bertani agar containing ampicillin and chloramphenicol to maintain 

the integrity of the vector. Plant transformants would confer resistance to blasticidin in the 

Murashige and Skoog (MS) medium with the expression of blasticidin S deaminase gene 

(BSD). Image above was modified from the vector representation diagram generated using 

SnapGene.


















