55 research outputs found

    Qualidade de vida de jovens de uma paróquia do Distrito Federal

    Get PDF
    Introdução: O sedentarismo na adolescência é considerado um problema de saúde pública, é comprovado por estudos que a atividade física tem diversos benefícios. Existem evidências que a religião é um fator associado ao bem-estar e a saúde dos jovens. Objetivo: O presente estudo analisou a associação de indicadores de qualidade de vida e religiosidade, e comportamentos sedentários em indivíduos Jovens de Planaltina-DF. Material e Métodos: Foi realizada a coleta de dados através do questionário SF-36. Considerações Finais: No estudo não foi encontrada diferença significativa (p > 0,05), entre as variáveis de qualidade de vida. Apesar de uma tendência a diferença significativa para a variável ‘‘Dor ’’, onde o grupo de 22 a 25 anos apresentou estado de dor melhor quando comparado ao grupo de 18 a 21 anos.Introduction: Physical inactivity in adolescence is considered a public health problem, is proven by studies that physical activity has many benefits. There is evidence that religion is a factor associated with well-being and health of young people. Objective: This study examined the association of religiosity indicators with the quality of life, and sedentary behavior in Youth Planaltina-DF individuals. Material and Methods: The data collection was performed by the SF-36 questionnaire. Final Thoughts: In the study found no difference between the quality of life variables were identified (p> 0.05), despite a tendency to significant differences for the variable pain where the group of 22 to 25 years showed pain state better when compared to the group 18-21 years

    Amazonian plant natural products:perspectives for discovery of new antimalarial drug leads

    Get PDF
    Plasmodium falciparum and P. vivax malaria parasites are now resistant, or showing signs of resistance, to most drugs used in therapy. Novel chemical entities that exhibit new mechanisms of antiplasmodial action are needed. New antimalarials that block transmission of Plasmodium spp. from humans to Anopheles mosquito vectors are key to malaria eradication efforts. Although P. vivax causes a considerable number of malaria cases, its importance has for long been neglected. Vivax malaria can cause severe manifestations and death; hence there is a need for P. vivax-directed research. Plants used in traditional medicine, namely Artemisia annua and Cinchona spp. are the sources of the antimalarial natural products artemisinin and quinine, respectively. Based on these compounds, semi-synthetic artemisinin-derivatives and synthetic quinoline antimalarials have been developed and are the most important drugs in the current therapeutic arsenal for combating malaria. In the Amazon region, where P. vivax predominates, there is a local tradition of using plant-derived preparations to treat malaria. Here, we review the current P. falciparum and P. vivax drug-sensitivity assays, focusing on challenges and perspectives of drug discovery for P. vivax, including tests against hypnozoites. We also present the latest findings of our group and others on the antiplasmodial and antimalarial chemical components from Amazonian plants that may be potential drug leads against malaria

    The activity of methylene blue against asexual and sexual stages of Plasmodium vivax

    Get PDF
    Methylene blue (MB) is an alternative for combating drug-resistant malaria parasites. Its transmission-blocking potential has been demonstrated in vivo in murine models, in vitro, and in clinical trials. MB shows high efficacy against Plasmodium vivax asexual stages; however, its efficacy in sexual stages is unknown. In this study, we evaluated the potential of MB against asexual and sexual forms of P. vivax isolated from the blood of patients residing in the Brazilian Amazon. An ex vivo schizont maturation assay, zygote to ookinete transformation assay, direct membrane feed assay (DMFA), and standard membrane feed assay (SMFA) using P. vivax gametocytes with MB exposure were performed. A cytotoxicity assay was also performed on freshly collected peripheral blood mononuclear cells (PBMCs) and the hepatocyte carcinoma cell line HepG2. MB inhibited the P. vivax schizont maturation and demonstrated an IC50 lower than that of chloroquine (control drug). In the sexual forms, the MB demonstrated a high level of inhibition in the transformation of the zygotes into ookinetes. In the DMFA, MB did not considerably affect the infection rate and showed low inhibition, but it demonstrated a slight decrease in the infection intensity in all tested concentrations. In contrast, in the SMFA, MB was able to completely block the transmission at the highest concentration (20 µM). MB demonstrated low cytotoxicity to fresh PBMCs but demonstrated higher cytotoxicity to the hepatocyte carcinoma cell line HepG2. These results show that MB may be a potential drug for vivax malaria treatment

    Temporal patterns of cytokine and injury biomarkers in hospitalized COVID-19 patients treated with methylprednisolone

    Get PDF
    BackgroundThe novel coronavirus disease 2019 (COVID-19) presents with complex pathophysiological effects in various organ systems. Following the COVID-19, there are shifts in biomarker and cytokine equilibrium associated with altered physiological processes arising from viral damage or aggressive immunological response. We hypothesized that high daily dose methylprednisolone improved the injury biomarkers and serum cytokine profiles in COVID-19 patients.MethodsInjury biomarker and cytokine analysis was performed on 50 SARS-Cov-2 negative controls and 101 hospitalized severe COVID-19 patients: 49 methylprednisolone-treated (MP group) and 52 placebo-treated serum samples. Samples from the treated groups collected on days D1 (pre-treatment) all the groups, D7 (2 days after ending therapy) and D14 were analyzed. Luminex assay quantified the biomarkers HMGB1, FABP3, myoglobin, troponin I and NTproBNP. Immune mediators (CXCL8, CCL2, CXCL9, CXCL10, TNF, IFN-γ, IL-17A, IL-12p70, IL-10, IL-6, IL-4, IL-2, and IL-1β) were quantified using cytometric bead array.ResultsAt pretreatment, the two treatment groups were comparable demographically. At pre-treatment (D1), injury biomarkers (HMGB1, TnI, myoglobin and FABP3) were distinctly elevated. At D7, HMGB1 was significantly higher in the MP group (p=0.0448) compared to the placebo group, while HMGB1 in the placebo group diminished significantly by D14 (p=0.0115). Compared to healthy control samples, several immune mediators (IL-17A, IL-6, IL-10, MIG, MCP-1, and IP-10) were considerably elevated at baseline (all p≤0.05). At D7, MIG and IP-10 of the MP-group were significantly lower than in the placebo-group (p=0.0431, p=0.0069, respectively). Longitudinally, IL-2 (MP-group) and IL-17A (placebo-group) had increased significantly by D14. In placebo group, IL-2 and IL-17A continuously increased, as IL-12p70, IL-10 and IP-10 steadily decreased during follow-up. The MP treated group had IL-2, IFN-γ, IL-17A and IL-12p70 progressively increase while IL-1β and IL-10 gradually decreased towards D14. Moderate to strong positive correlations between chemokines and cytokines were observed on D7 and D14.ConclusionThese findings suggest MP treatment could ameliorate levels of myoglobin and FABP3, but appeared to have no impact on HMGB1, TnI and NTproBNP. In addition, methylprednisolone relieves the COVID-19 induced inflammatory response by diminishing MIG and IP-10 levels. Overall, corticosteroid (methylprednisolone) use in COVID-19 management influences the immunological molecule and injury biomarker profile in COVID-19 patients

    Violacein-Induced Chaperone System Collapse Underlies Multistage Antiplasmodial Activity

    Get PDF
    Antimalarial drugs with novel modes of action and wide therapeutic potential are needed to pave the way for malaria eradication. Violacein is a natural compound known for its biological activity against cancer cells and several pathogens, including the malaria parasite, Plasmodium falciparum (Pf). Herein, using chemical genomic profiling (CGP), we found that violacein affects protein homeostasis. Mechanistically, violacein binds Pf chaperones, PfHsp90 and PfHsp70-1, compromising the latter's ATPase and chaperone activities. Additionally, violacein-treated parasites exhibited increased protein unfolding and proteasomal degradation. The uncoupling of the parasite stress response reflects the multistage growth inhibitory effect promoted by violacein. Despite evidence of proteotoxic stress, violacein did not inhibit global protein synthesis via UPR activation - a process that is highly dependent on chaperones, in agreement with the notion of a violacein-induced proteostasis collapse. Our data highlight the importance of a functioning chaperone-proteasome system for parasite development and differentiation. Thus, a violacein-like small molecule might provide a good scaffold for development of a novel probe for examining the molecular chaperone network and/or antiplasmodial drug design.publishersversionpublishe
    corecore