7 research outputs found

    Can timber provision from Amazonian production forests be sustainable?

    Get PDF
    Around 30 Mm3 of sawlogs are extracted annually by selective logging of natural production forests in Amazonia, Earth's most extensive tropical forest. Decisions concerning the management of these production forests will be of major importance for Amazonian forests' fate. To date, no regional assessment of selective logging sustainability supports decision-making. Based on data from 3500 ha of forest inventory plots, our modelling results show that the average periodic harvests of 20 m3 ha−1 will not recover by the end of a standard 30 year cutting cycle. Timber recovery within a cutting cycle is enhanced by commercial acceptance of more species and with the adoption of longer cutting cycles and lower logging intensities. Recovery rates are faster in Western Amazonia than on the Guiana Shield. Our simulations suggest that regardless of cutting cycle duration and logging intensities, selectively logged forests are unlikely to meet timber demands over the long term as timber stocks are predicted to steadily decline. There is thus an urgent need to develop an integrated forest resource management policy that combines active management of production forests with the restoration of degraded and secondary forests for timber production. Without better management, reduced timber harvests and continued timber production declines are unavoidable

    Estimation of Aboveground Biomass Stock in Tropical Savannas Using Photogrammetric Imaging

    Get PDF
    The use of photogrammetry technology for aboveground biomass (AGB) stock estimation in tropical savannas is a challenging task and is still at a preliminary stage. This work aimed to use metrics derived from point clouds, constructed using photogrammetric imaging obtained by an RGB camera on board a remotely piloted aircraft (RPA), to generate a model for estimating AGB stock for the shrubby-woody stratum in savanna areas of Central Brazil (Cerrado). AGB stock was estimated using forest inventory data and an allometric equation. The photogrammetric digital terrain model (DTM) was validated with altimetric field data, demonstrating that the passive sensor can identify topographic variations in sites with discontinuous canopies. The inventory estimated an average AGB of 18.3 (±13.3) Mg ha−1 at the three sampled sites. The AGB model selected was composed of metrics used for height at the 10th and 95th percentile, with an adjusted R2 of 93% and a relative root mean squared error (RMSE) of 16%. AGB distribution maps were generated from the spatialization of the metrics selected for the model, optimizing the visualization and our understanding of the spatial distribution of forest AGB. The study represents a step forward in mapping biomass and carbon stocks in tropical savannas using low-cost remote sensing platforms

    MANAGEMENT OF <i>Amburana cearensis</i> var. <i>acreana</i> IN ACRE STATE, BRAZIL

    Get PDF
    http://dx.doi.org/10.5902/1980509814586This work has as its objectives: a) to assess the geographical distribution and population structure of Amburana cearensis var. acreana; b) to calculate sustainable cutting rates, according to stipulated cutting cycles, and c) to simulate the projected recovery potential in volume based on the calculated cutting rate. It was used data from sustainable forest management plans, and the results will contribute for future decisions about its endangered condition. The results did not corroborate the information that Amburana cearensis var. acreana is endangered in Acre state. However the management sustainability will only be feasible if considered the ideal remaining population structure and the estimative of the optimal cutting rate according to the cutting cycle. </p

    Optimal strategies for ecosystem services provision in Amazonian production forests

    Get PDF
    International audienceAlthough tropical forests harbour most of the terrestrial carbon and biological diversity on Earth they continue to be deforested or degraded at high rates. In Amazonia, the largest tropical forest on Earth, a sixth of the remaining natural forests is formally dedicated to timber extraction through selective logging. Reconciling timber extraction with the provision of other ecosystem services (ES) remains a major challenge for forest managers and policy-makers. This study applies a spatial optimisation of logging in Amazonian production forests to analyse potential trade-offs between timber extraction and recovery, carbon storage, and biodiversity conservation. Current logging regulations with unique cutting cycles result in sub-optimal ES-use efficiency. Long-term timber provision would require the adoption of a land-sharing strategy that involves extensive low-intensity logging, although high transport and road-building costs might make this approach economically unattractive. By contrast, retention of carbon and biodiversity would be enhanced by a land-sparing strategy restricting highintensive logging to designated areas such as the outer fringes of the region. Depending on management goals and societal demands, either choice will substantially influence the future of Amazonian forests. Overall, our results highlight the need for revaluation of current logging regulations and regional cooperation among Amazonian countries to enhance coherent and transboundary forest management
    corecore