3,313 research outputs found

    Application of Thermal Infrared Multiband Scanner (TIMS) data to mapping of Plutonic and stratified rock and assemblages in accreted terrains of the Northern Sierra, California

    Get PDF
    The Thermal Infrared Multispectral Scanner (TIMS) data were acquired over the Donner Pass area in California on September 12, 1985. The higher peaks in the area approach 9,200 feet in elevation, while the canyon of the north fork of the American River is only 3000 feet in elevation. The vegetation is dominated by conifers, although manzanita and other shrubs are present in areas where soils have developed. The data contain noise patterns which cut across scan lines diagonally. The TIMS data were analyzed using both photointerpretative and digital processing techniques. Preliminary image interpretation and field analysis confirmed that TIMS image data displays the chert units and silicic volcanics as bright red. The imagery appears to display zoning in the batholithic and hypabyssal intrusive rocks, although this was not field checked at this time. Rocks which appear to be more dioritic in composition appear purple on the imagery, while rocks more granitic in composition appear shades of red and pink. Areas that have more than 40% vegetative cover appear green on the imagery

    The thermodynamics of creating correlations: Limitations and optimal protocols

    Get PDF
    We establish a rigorous connection between fundamental resource theories at the quantum scale. Correlations and entanglement constitute indispensable resources for numerous quantum information tasks. However, their establishment comes at the cost of energy, the resource of thermodynamics, and is limited by the initial entropy. Here, the optimal conversion of energy into correlations is investigated. Assuming the presence of a thermal bath, we establish general bounds for arbitrary systems and construct a protocol saturating them. The amount of correlations, quantified by the mutual information, can increase at most linearly with the available energy, and we determine where the linear regime breaks down. We further consider the generation of genuine quantum correlations, focusing on the fundamental constituents of our universe: fermions and bosons. For fermionic modes, we find the optimal entangling protocol. For bosonic modes, we show that while Gaussian operations can be outperformed in creating entanglement, their performance is optimal for high energies.Comment: 12 pages, 6 figure

    EDC-mediated oligonucleotide immobilization on a long period grating optical biosensor

    Get PDF
    We present the development and simplification of label-free fiber optic biosensors based on immobilization of oligonucleotides on dual-peak long period gratings (dLPGs). This improvement is the result of a simplification of biofunctionalization methodology. A one-step 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-mediated reaction has been developed for the straightforward immobilization of unmodified oligonucleotides on the glass fiber surface along the grating region, leading to covalent attachment of a 5´-phosphorylated probe oligonucleotide to the amino-derivatized fiber grating surface. Immobilization is achieved via a 5´phosphate-specific linkage, leaving the remainder of the oligonucleotide accessible for binding reactions. The dLPG has been tested in different external media to demonstrate its inherent ultrahigh sensitivity to the surrounding-medium refractive index (RI) achieving 50- fold improvement in RI sensitivity over the previously-published LPG sensor in media with RI’s relevant to biological assays. After functionalization, the dLPG biosensor was used to monitor the hybridization of complementary oligonucleotides showing a detectable oligonucleotide concentration of 4 nM. The proposed one-step EDC reaction approach can be further extended to develop fiber optic biosensors for disease analysis and medical diagnosis with the advances of label-free, real-time, multiplex, high sensitivity and specificity

    Using BEXIS 2 as efficient research data management system for the ATTO research project

    Get PDF
    The Amazon Tall Tower Observatory (ATTO) is a joint German-Brazilian project launched in 2009 and funded by MCTI (Brazil), BMBF (Germany) and the Max-Planck Society. ATTO is with its 325 m-tall tower, the associated research infrastructure and nearby scientific plots a unique multidisciplinary scientific research platform in a region of global significance. Located at the centre of the world’s largest continuous tropical forest, ATTO allows the observation of geo-/bio-/atmosphere interactions and their impact on climate, atmospheric chemistry, aerosols and clouds, and greenhouse gases in near-pristine conditions. From the data management point of view, the main challenge is to provide a functional platform for consortium-internal and -external transparency, traceability, and data exchange between a large number of institutions and research groups that are involved in the project in order to foster collaboration and maximize the output of the project. We use BEXIS 2, a flexible, interoperable and modular data management software, to provide efficient data management and exchange within such a large research consortium; and to allow long-term data archiving, documentation, secondary analysis, data reuse and accessibility for scientific community. We will present a showcase how the BEXIS 2 instance was modified in order to manage highly diverse data of a large research consortium ranging from i.e. micrometeorological data and greenhouse gas measurements as well as remote sensing data towards soil and water samples. The main focus will be on the flexibility of the metadata definition and the implementation of an automatic DOI registration, which allows BEXIS 2 to act as a data repository for the ATTO project

    "On the Spot": travelling artists and Abolitionism, 1770-1830

    Get PDF
    Until recently the visual culture of Atlantic slavery has rarely been critically scrutinised. Yet in the first decades of the nineteenth century slavery was frequently represented by European travelling artists, often in the most graphic, sometimes voyeuristic, detail. This paper examines the work of several itinerant artists, in particular Augustus Earle (1793-1838) and Agostino Brunias (1730–1796), whose very mobility along the edges of empire was part of a much larger circulatory system of exchange (people, goods and ideas) and diplomacy that characterised Europe’s Age of Expansion. It focuses on the role of the travelling artist, and visual culture more generally, in the development of British abolitionism between 1770 and 1830. It discusses the broad circulation of slave imagery within European culture and argues for greater recognition of the role of such imagery in the abolitionist debates that divided Britain. Furthermore, it suggests that the epistemological authority conferred on the travelling artist—the quintessential eyewitness—was key to the rhetorical power of his (rarely her) images. Artists such as Earle viewed the New World as a boundless source of fresh material that could potentially propel them to fame and fortune. Johann Moritz Rugendas (1802-1858), on the other hand, was conscious of contributing to a global scientific mission, a Humboldtian imperative that by the 1820s propelled him and others to travel beyond the traditional itinerary of the Grand Tour. Some artists were implicated in the very fabric of slavery itself, particularly those in the British West Indies such as William Clark (working 1820s) and Richard Bridgens (1785-1846); others, particularly those in Brazil, expressed strong abolitionist sentiments. Fuelled by evangelical zeal to record all aspects of the New World, these artists recognised the importance of representing the harsh realities of slave life. Unlike those in the metropole who depicted slavery (most often in caustic satirical drawings), many travelling artists believed strongly in the evidential value of their images, a value attributed to their global mobility. The paper examines the varied and complex means by which visual culture played a significant and often overlooked role in the political struggles that beset the period

    Improved Pairwise Measurement-Based Surface Code

    Full text link
    We devise a new realization of the surface code on a rectangular lattice of qubits utilizing single-qubit and nearest-neighbor two-qubit Pauli measurements and three auxiliary qubits per plaquette. This realization gains substantial advantages over prior pairwise measurement-based realizations of the surface code. It has a short operation period of 4 steps and our performance analysis for a standard circuit noise model yields a high fault-tolerance threshold of approximately 0.66%0.66\% . The syndrome extraction circuits avoid bidirectional hook errors, so we can achieve full code distance by choosing appropriate boundary conditions. We also construct variants of the syndrome extraction circuits that entirely prevent hook errors, at the cost of larger circuit depth. This achieves full distance regardless of boundary conditions, with only a modest decrease in the threshold. Furthermore, we propose an efficient strategy for dealing with dead components (qubits and measurements) in our surface code realization, which can be adopted more generally for other surface code realizations. This new surface code realization is highly optimized for Majorana-based hardware, accounting for constraints imposed by layouts and the implementation of measurements, making it competitive with the recently proposed Floquet codes.Comment: 38 pages, 32 figure

    Dynamical transition, hydrophobic interface, and the temperature dependence of electrostatic fluctuations in proteins

    Full text link
    Molecular dynamics simulations have revealed a dramatic increase, with increasing temperature, of the amplitude of electrostatic fluctuations caused by water at the active site of metalloprotein plastocyanin. The increased breadth of electrostatic fluctuations, expressed in terms of the reorganization energy of changing the redox state of the protein, is related to the formation of the hydrophobic protein/water interface allowing large-amplitude collective fluctuations of the water density in the protein's first solvation shell. On the top of the monotonic increase of the reorganization energy with increasing temperature, we have observed a spike at 220 K also accompanied by a significant slowing of the exponential collective Stokes shift dynamics. In contrast to the local density fluctuations of the hydration-shell waters, these spikes might be related to the global property of the water solvent crossing the Widom line.Comment: 9 pages, 8 figure

    Real-Time MRI-Guided Catheter Tracking Using Hyperpolarized Silicon Particles

    Get PDF
    Visualizing the movement of angiocatheters during endovascular interventions is typically accomplished using x-ray fluoroscopy. There are many potential advantages to developing magnetic resonance imaging-based approaches that will allow three-dimensional imaging of the tissue/vasculature interface while monitoring other physiologically-relevant criteria, without exposing the patient or clinician team to ionizing radiation. Here we introduce a proof-of-concept development of a magnetic resonance imaging-guided catheter tracking method that utilizes hyperpolarized silicon particles. The increased signal of the silicon particles is generated via low-temperature, solid-state dynamic nuclear polarization, and the particles retain their enhanced signal for ?40?minutes—allowing imaging experiments over extended time durations. The particles are affixed to the tip of standard medical-grade catheters and are used to track passage under set distal and temporal points in phantoms and live mouse models. With continued development, this method has the potential to supplement x-ray fluoroscopy and other MRI-guided catheter tracking methods as a zero-background, positive contrast agent that does not require ionizing radiation

    Milestones toward Majorana-based quantum computing

    Get PDF
    We introduce a scheme for preparation, manipulation, and read out of Majorana zero modes in semiconducting wires with mesoscopic superconducting islands. Our approach synthesizes recent advances in materials growth with tools commonly used in quantum-dot experiments, including gate control of tunnel barriers and Coulomb effects, charge sensing, and charge pumping. We outline a sequence of milestones interpolating between zero-mode detection and quantum computing that includes (1) detection of fusion rules for non-Abelian anyons using either proximal charge sensors or pumped current, (2) validation of a prototype topological qubit, and (3) demonstration of non-Abelian statistics by braiding in a branched geometry. The first two milestones require only a single wire with two islands, and additionally enable sensitive measurements of the system’s excitation gap, quasiparticle poisoning rates, residual Majorana zero-mode splittings, and topological-qubit coherence times. These pre-braiding experiments can be adapted to other manipulation and read out schemes as well
    corecore