433 research outputs found

    Positive solutions of Schr\"odinger equations and fine regularity of boundary points

    Full text link
    Given a Lipschitz domain Ω\Omega in RN{\mathbb R} ^N and a nonnegative potential VV in Ω\Omega such that V(x) d(x,∂Ω)2V(x)\, d(x,\partial \Omega)^2 is bounded in Ω\Omega we study the fine regularity of boundary points with respect to the Schr\"odinger operator LV:=Δ−VL_V:= \Delta -V in Ω\Omega . Using potential theoretic methods, several conditions equivalent to the fine regularity of z∈∂Ωz \in \partial \Omega are established. The main result is a simple (explicit if Ω\Omega is smooth) necessary and sufficient condition involving the size of VV for zz to be finely regular. An essential intermediate result consists in a majorization of ∫A∣ud(.,∂Ω)∣2 dx\int_A | {\frac {u} {d(.,\partial \Omega)}} | ^2\, dx for uu positive harmonic in Ω\Omega and A⊂ΩA \subset \Omega . Conditions for almost everywhere regularity in a subset AA of ∂Ω \partial \Omega are also given as well as an extension of the main results to a notion of fine L1∣L0{\mathcal L}_1 | {\mathcal L}_0-regularity, if Lj=L−Vj{\mathcal L}_j={\mathcal L}-V_j, V0, V1V_0,\, V_1 being two potentials, with V0≤V1V_0 \leq V_1 and L{\mathcal L} a second order elliptic operator.Comment: version 1. 23 pages version 3. 28 pages. Mainly a typo in Theorem 1.1 is correcte

    Mutual Orientation Effects on Electron-Transfer Reactions between Porphyrins

    Get PDF
    Mutual orientation effects on the rate of nonadiabatic electron transfer between several diporphyrin pairs of experimental interest are examined. The electronic matrix element for electron transfer is calculated within a one-electron spheroidal model for a variety of states and orientations which are relevant to both biological and synthetic electron-transfer systems. Both the mutual orientation of the pairs and the nodal structure of the donor and acceptor orbitals can have large effects on calculated rates

    Weak-Localization in Chaotic Versus Non-Chaotic Cavities: A Striking Difference in the Line Shape

    Full text link
    We report experimental evidence that chaotic and non-chaotic scattering through ballistic cavities display distinct signatures in quantum transport. In the case of non-chaotic cavities, we observe a linear decrease in the average resistance with magnetic field which contrasts markedly with a Lorentzian behavior for a chaotic cavity. This difference in line-shape of the weak-localization peak is related to the differing distribution of areas enclosed by electron trajectories. In addition, periodic oscillations are observed which are probably associated with the Aharonov-Bohm effect through a periodic orbit within the cavities.Comment: 4 pages revtex + 4 figures on request; amc.hub.94.

    Coin Tossing as a Billiard Problem

    Full text link
    We demonstrate that the free motion of any two-dimensional rigid body colliding elastically with two parallel, flat walls is equivalent to a billiard system. Using this equivalence, we analyze the integrable and chaotic properties of this new class of billiards. This provides a demonstration that coin tossing, the prototypical example of an independent random process, is a completely chaotic (Bernoulli) problem. The related question of which billiard geometries can be represented as rigid body systems is examined.Comment: 16 pages, LaTe

    Orbital effect of in-plane magnetic field on quantum transport in chaotic lateral dots

    Full text link
    We show how the in-plane magnetic field, which breaks time-reversal and rotational symmetries of the orbital motion of electrons in a heterostructure due to the momentum-dependent inter-subband mixing, affects weak localisation correction to conductance of a large-area chaotic lateral quantum dot and parameteric dependences of universal conductance fluctuations in it.Comment: 4 pages with a figur

    Heisenberg's Uncertainty Relation and Bell Inequalities in High Energy Physics

    Full text link
    An effective formalism is developed to handle decaying two-state systems. Herewith, observables of such systems can be described by a single operator in the Heisenberg picture. This allows for using the usual framework in quantum information theory and, hence, to enlighten the quantum feature of such systems compared to non-decaying systems. We apply it to systems in high energy physics, i.e. to oscillating meson-antimeson systems. In particular, we discuss the entropic Heisenberg uncertainty relation for observables measured at different times at accelerator facilities including the effect of CP violation, i.e. the imbalance of matter and antimatter. An operator-form of Bell inequalities for systems in high energy physics is presented, i.e. a Bell-witness operator, which allows for simple analysis of unstable systems.Comment: 17 page

    Quantum master equation for a system influencing its environment

    Get PDF
    A perturbative quantum master equation is derived for a system interacting with its environment, which is more general than the ones derived before. Our master equation takes into account the effect of the energy exchanges between the system and the environment and the conservation of energy in a finite total system. This master quantum describes relaxation mechanisms in isolated nanoscopic quantum systems. In its most general form, this equation is non-Markovian and a Markovian version of it rules the long-time relaxation. We show that our equation reduces to the Redfield equation in the limit where the energy of the system does not affect the density of state of its environment. This master equation and the Redfield one are applied to a spin-environment model defined in terms of random matrices and compared with the solutions of the exact von Neumann equation. The comparison proves the necessity to allow energy exchange between the subsystem and the environment in order to correctly describe the relaxation in isolated nanoscopic total system.Comment: 39 pages, 10 figure

    Revealing Bell's Nonlocality for Unstable Systems in High Energy Physics

    Get PDF
    Entanglement and its consequences - in particular the violation of Bell inequalities, which defies our concepts of realism and locality - have been proven to play key roles in Nature by many experiments for various quantum systems. Entanglement can also be found in systems not consisting of ordinary matter and light, i.e. in massive meson--antimeson systems. Bell inequalities have been discussed for these systems, but up to date no direct experimental test to conclusively exclude local realism was found. This mainly stems from the fact that one only has access to a restricted class of observables and that these systems are also decaying. In this Letter we put forward a Bell inequality for unstable systems which can be tested at accelerator facilities with current technology. Herewith, the long awaited proof that such systems at different energy scales can reveal the sophisticated "dynamical" nonlocal feature of Nature in a direct experiment gets feasible. Moreover, the role of entanglement and CP violation, an asymmetry between matter and antimatter, is explored, a special feature offered only by these meson-antimeson systems.Comment: 6 pages, 3 figure

    Superconformal Multi-Black Hole Moduli Spaces in Four Dimensions

    Full text link
    Quantum mechanics on the moduli space of N supersymmetric Reissner-Nordstrom black holes is shown to admit 4 supersymmetries using an unconventional supermultiplet which contains 3N bosons and 4N fermions. A near-horizon limit is found in which the quantum mechanics of widely separated black holes decouples from that of strongly-interacting, near-coincident black holes. This near-horizon theory is shown to have an enhanced D(2,1;0) superconformal symmetry. The bosonic symmetries are SL(2,R) conformal symmetry and SU(2)xSU(2) R-symmetry arising from spatial rotations and the R-symmetry of N=2 supergravity.Comment: 23 pages, harvmac. v2: many typos fixe
    • …
    corecore