27 research outputs found

    Spectral and Timing Analysis of the accretion-powered pulsar 4U 1626-67 observed with Suzaku and NuSTAR

    Get PDF
    We present an analysis of the spectral shape and pulse profile of the accretion-powered pulsar 4U 1626-67 observed with Suzaku and NuSTAR during a spin-up state. The pulsar, which experienced a torque reversal to spin-up in 2008, has a spin period of 7.7 s. Comparing the phase-averaged spectra obtained with Suzaku in 2010 and with NuSTAR in 2015, we find that the spectral shape changed between the two observations: the 3-10 keV flux increased by 5% while the 30-60 keV flux decreased significantly by 35%. Phase-averaged and phase-resolved spectral analysis shows that the continuum spectrum observed by NuSTAR is well described by an empirical NPEX continuum with an added broad Gaussian emission component around the spectral peak at 20 keV. Taken together with the observed Pdot value obtained from Fermi/GBM, we conclude that the spectral change between the Suzaku and NuSTAR observations was likely caused by an increase of the accretion rate. We also report the possible detection of asymmetry in the profile of the fundamental cyclotron line. Furthermore, we present a study of the energy-resolved pulse profiles using a new relativistic ray tracing code, where we perform a simultaneous fit to the pulse profiles assuming a two-column geometry with a mixed pencil- and fan-beam emission pattern. The resulting pulse profile decompositions enable us to obtain geometrical parameters of accretion columns (inclination, azimuthal and polar angles) and a fiducial set of beam patterns. This information is important to validate the theoretical predictions from radiation transfer in a strong magnetic field.Comment: 19 pages, 14 figures, Accepted for publication in ApJ on May 5, 201

    Strain-specificity in the hydrogen sulphide signalling network following dietary restriction in recombinant inbred mice

    Get PDF
    Modulation of the ageing process by dietary restriction (DR) across multiple taxa is well established. While the exact mechanism through which DR acts remains elusive, the gasotransmitter hydrogen sulphide (H2S) may play an important role. We employed a comparative-type approach using females from three ILSXISS recombinant inbred mouse strains previously reported to show differential lifespan responses following 40% DR. Following long-term (10 months) 40% DR, strain TejJ89—reported to show lifespan extension under DR—exhibited elevated hepatic H2S production relative to its strain-specific ad libitum (AL) control. Strain TejJ48 (no reported lifespan effect following 40% DR) exhibited significantly reduced hepatic H2S production, while H2S production was unaffected by DR in strain TejJ114 (shortened lifespan reported following 40% DR). These differences in H2S production were reflected in highly divergent gene and protein expression profiles of the major H2S production and disposal enzymes across strains. Increased hepatic H2S production in TejJ89 mice was associated with elevation of the mitochondrial H2S-producing enzyme 3-mercaptopyruvate sulfurtransferase (MPST). Our findings further support the potential role of H2S in DR-induced longevity and indicate the presence of genotypic-specificity in the production and disposal of hepatic H2S in response to 40% DR in mice

    The 5 hr pulse period and broadband spectrum of the Symbiotic X-ray Binary 3A 1954+319

    Get PDF
    We present an analysis of the highly variable accreting X-ray pulsar 3A 1954+319 using 2005-2009 monitoring data obtained with INTEGRAL and Swift. This considerably extends the pulse period history and covers flaring episodes in 2005 and 2008. In 2006 the source was identified as one of only a few known symbiotic X-ray binaries (SyXBs), i.e., systems composed of a neutron star accreting from the inhomogeneous medium around an M-giant star. The extremely long pulse period of 5.3 hr is directly visible in the 2008 INTEGRAL-ISGRI outburst light curve. The pulse profile is double peaked and generally not significantly energy dependent although there is an indication of possible softening during the main pulse. During the outburst a strong spin-up of -1.8 10^(-4) hr hr^(-1) occurred. Between 2005 and 2008 a long-term spin-down trend of 2.1 10^-5 hr hr^(-1) was observed for the first time for this source. The 3-80 keV pulse peak spectrum of 3A 1954+319 during the 2008 flare could be well described by a thermal Comptonization model. We interpret the results within the framework of a recently developed quasi-spherical accretion model for SyXBs.Comment: 5 pages, 4 figures, published in The Astrophysical Journal Letter

    Hepatic hydrogen sulfide levels are reduced in mouse model of Hutchinson-Gilford progeria syndrome

    Get PDF
    Hutchinson-Gilford progeria syndrome (HGPS) is a rare human disease characterised by accelerated biological ageing. Current treatments are limited, and most patients die before 15 years of age. Hydrogen sulfide (H2S) is an important gaseous signalling molecule that it central to multiple cellular homeostasis mechanisms. Dysregulation of tissue H2S levels is thought to contribute to an ageing phenotype in many tissues across animal models. Whether H2S is altered in HGPS is unknown. We investigated hepatic H2S production capacity and transcript, protein and enzymatic activity of proteins that regulate hepatic H2S production and disposal in a mouse model of HGPS (G609G mice, mutated Lmna gene equivalent to a causative mutation in HGPS patients). G609G mice were maintained on either regular chow (RC) or high fat diet (HFD), as HFD has been previously shown to significantly extend lifespan of G609G mice, and compared to wild type (WT) mice maintained on RC. RC fed G609G mice had significantly reduced hepatic H2S production capacity relative to WT mice, with a compensatory elevation in mRNA transcripts associated with several H2S production enzymes, including cystathionine-γ-lyase (CSE). H2S levels and CSE protein were partially rescued in HFD fed G609G mice. As current treatments for patients with HGPS have failed to confer significant improvements to symptoms or longevity, the need for novel therapeutic targets is acute and the regulation of H2S through dietary or pharmacological means may be a promising new avenue for research

    The giant outburst of 4U 0115+634 in 2011 with Suzaku and RXTE - Minimizing cyclotron line biases

    Get PDF
    We present an analysis of X-ray spectra of the high-mass X-ray binary 4U 0115+634 as observed with Suzaku and RXTE in 2011 July, during the fading phase of a giant X-ray outburst. We used a continuum model consisting of an absorbed cutoff power law and an ad hoc Gaussian emission feature centered around 8.5 keV, which we attribute to cyclotron emission. Our results are consistent with a fundamental cyclotron absorption line centered at ∼10.2 keV for all observed flux ranges. At the same time we rule out significant influence of the 8.5 kev Gaussian on the parameters of the cyclotron resonant scattering feature, which are not consistent with the cyclotron line energies or the depths of previously reported flux-dependent descriptions. We also show that some continuum models can lead to artificial line-like residuals in the analyzed spectra, which are then misinterpreted as unphysically strong cyclotron lines. Specifically, our results do not support the existence of a previously claimed additional cyclotron feature at ∼15 keV. Apart from these features, we find for the first time evidence for a He-like Fe XXV emission line at ∼6.7 keV and weak H-like Fe XXVI emission close to ∼7.0 keV.We acknowledge funding by the European Space Agency under contract number C4000115860/15/NL/IB, by the Bundesministerium für Wirtschaft und Technologie under Deutsches Zentrum für Luft- und Raumfahrt grants 50OR0808, 50OR0905, 50OR1113, and 50OR1207, and by the Deutscher Akademischer Austauschdienst. MTW is supported by the NASA Astrophysical Data Analysis Program and the Chief of Naval Research. VG is supported through the Margarethe von Wrangell fellowship by the ESF and the Ministry of Science, Research and the Arts Baden-Württemberg. SMN and JMT acknowledge Spanish Ministerio de Ciencia, Tecnología e Innovación (MICINN) through the grant ESP2016-76683-C3-1-R and ESP2017-85691-P, respectively

    The Transient Accereting X-Ray Pulsar XTE J1946+274: Stability of the X-Ray Properties at Low Flux and Updated Orbital Solution

    Get PDF
    We present a timing and spectral analysis of the X-ray pulsar XTE J1946+274 observed with Suzaku during an outburst decline in 2010 October and compare with previous results. XTE J1946+274 is a transient X-ray binary consisting of a Be-type star and a neutron star with a 15.75 s pulse period in a 172 days orbit with 2–3 outbursts per orbit during phases of activity. We improve the orbital solution using data from multiple instruments. The X-ray spectrum can be described by an absorbed Fermi–Dirac cut-off power-law model along with a narrow Fe Kα line at 6.4 keV and a weak Cyclotron Resonance Scattering Feature (CRSF) at ~35 keV. The Suzaku data are consistent with the previously observed continuum flux versus iron line flux correlation expected from fluorescence emission along the line of sight. However, the observed iron line flux is slightly higher, indicating the possibility of a higher iron abundance or the presence of non-uniform material. We argue that the source most likely has only been observed in the subcritical (non-radiation dominated) state since its pulse profile is stable over all observed luminosities and the energy of the CRSF is approximately the same at the highest (~5 × 10^(37) erg s^(−1)) and lowest (~5 × 10^(36) erg s^(−1)) observed 3–60 keV luminosities

    Spectral and Timing Analysis of the Accretion-powered Pulsar 4U 1626–67 Observed with Suzaku and NuSTAR

    Get PDF
    We present an analysis of the spectral shape and pulse profile of the accretion-powered pulsar 4U 1626−67 observed with Suzaku and Nuclear Spectroscopic Telescope Array (NuSTAR) during a spin-up state. The pulsar, which experienced a torque reversal to spin-up in 2008, has a spin period of ~7.7 s. Comparing the phase-averaged spectra obtained with Suzaku in 2010 and with NuSTAR in 2015, we find that the spectral shape changed between the two observations: the 3–10 keV flux increased by ~5%, while the 30–60 keV flux decreased significantly by ~35%. Phase-averaged and phase-resolved spectral analysis shows that the continuum spectrum observed by NuSTAR is well described by an empirical negative and positive power law times exponential continuum with an added broad Gaussian emission component around the spectral peak at ~20 keV. Taken together with the observed Ṗ value obtained from the Fermi/gamma-ray burst monitor data, we conclude that the spectral change between the Suzaku and NuSTAR observations was likely caused by an increase in the accretion rate. We also report the possible detection of asymmetry in the profile of the fundamental cyclotron line. Furthermore, we present a study of the energy-resolved pulse profiles using a new relativistic ray tracing code, where we perform a simultaneous fit to the pulse profiles assuming a two-column geometry with a mixed pencil- and fan-beam emission pattern. The resulting pulse profile decompositions enable us to obtain geometrical parameters of accretion columns (inclination, azimuthal and polar angles) and a fiducial set of beam patterns. This information is important to validate the theoretical predictions from radiation transfer in a strong magnetic field

    Research and Science Today No. 2(4)/2012

    Full text link

    To which world regions does the valence–dominance model of social perception apply?

    Get PDF
    Over the past 10 years, Oosterhof and Todorov’s valence–dominance model has emerged as the most prominent account of how people evaluate faces on social dimensions. In this model, two dimensions (valence and dominance) underpin social judgements of faces. Because this model has primarily been developed and tested in Western regions, it is unclear whether these findings apply to other regions. We addressed this question by replicating Oosterhof and Todorov’s methodology across 11 world regions, 41 countries and 11,570 participants. When we used Oosterhof and Todorov’s original analysis strategy, the valence–dominance model generalized across regions. When we used an alternative methodology to allow for correlated dimensions, we observed much less generalization. Collectively, these results suggest that, while the valence–dominance model generalizes very well across regions when dimensions are forced to be orthogonal, regional differences are revealed when we use different extraction methods and correlate and rotate the dimension reduction solution.C.L. was supported by the Vienna Science and Technology Fund (WWTF VRG13-007); L.M.D. was supported by ERC 647910 (KINSHIP); D.I.B. and N.I. received funding from CONICET, Argentina; L.K., F.K. and Á. Putz were supported by the European Social Fund (EFOP-3.6.1.-16-2016-00004; ‘Comprehensive Development for Implementing Smart Specialization Strategies at the University of Pécs’). K.U. and E. Vergauwe were supported by a grant from the Swiss National Science Foundation (PZ00P1_154911 to E. Vergauwe). T.G. is supported by the Social Sciences and Humanities Research Council of Canada (SSHRC). M.A.V. was supported by grants 2016-T1/SOC-1395 (Comunidad de Madrid) and PSI2017-85159-P (AEI/FEDER UE). K.B. was supported by a grant from the National Science Centre, Poland (number 2015/19/D/HS6/00641). J. Bonick and J.W.L. were supported by the Joep Lange Institute. G.B. was supported by the Slovak Research and Development Agency (APVV-17-0418). H.I.J. and E.S. were supported by a French National Research Agency ‘Investissements d’Avenir’ programme grant (ANR-15-IDEX-02). T.D.G. was supported by an Australian Government Research Training Program Scholarship. The Raipur Group is thankful to: (1) the University Grants Commission, New Delhi, India for the research grants received through its SAP-DRS (Phase-III) scheme sanctioned to the School of Studies in Life Science; and (2) the Center for Translational Chronobiology at the School of Studies in Life Science, PRSU, Raipur, India for providing logistical support. K. Ask was supported by a small grant from the Department of Psychology, University of Gothenburg. Y.Q. was supported by grants from the Beijing Natural Science Foundation (5184035) and CAS Key Laboratory of Behavioral Science, Institute of Psychology. N.A.C. was supported by the National Science Foundation Graduate Research Fellowship (R010138018). We acknowledge the following research assistants: J. Muriithi and J. Ngugi (United States International University Africa); E. Adamo, D. Cafaro, V. Ciambrone, F. Dolce and E. Tolomeo (Magna Græcia University of Catanzaro); E. De Stefano (University of Padova); S. A. Escobar Abadia (University of Lincoln); L. E. Grimstad (Norwegian School of Economics (NHH)); L. C. Zamora (Franklin and Marshall College); R. E. Liang and R. C. Lo (Universiti Tunku Abdul Rahman); A. Short and L. Allen (Massey University, New Zealand), A. Ateş, E. Güneş and S. Can Özdemir (Boğaziçi University); I. Pedersen and T. Roos (Åbo Akademi University); N. Paetz (Escuela de Comunicación Mónica Herrera); J. Green (University of Gothenburg); M. Krainz (University of Vienna, Austria); and B. Todorova (University of Vienna, Austria). The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.https://www.nature.com/nathumbehav/am2023BiochemistryGeneticsMicrobiology and Plant Patholog
    corecore