182 research outputs found

    Intracellular inclusions of uncultured magnetotactic bacteria

    Get PDF
    Magnetotactic bacteria produce magnetic crystals in organelles called magnetosomes. The bacterial cells may also have phosphorus-containing granules, sulfur globules, or polyhydroxyalkanoate inclusions. In the present study, the ultrastructure and elemental composition of intracellular inclusions from uncultured magnetotactic bacteria collected in a marine environment are described. Magnetosomes contained mainly defect-free, single magnetite crystals with prismatic morphologies. Two types of phosphorus-containing granules were found in magnetotactic cocci. The most common consisted of phosphorus-rich granules containing P, O, and Mg; and sometimes also C, Na, Al, K, Ca, Mn, Fe, Zn, and small amounts of S and Cl were also found. In phosphorus-sulfur-iron granules, P, O, S, Na, Mg, Ca, Fe, and frequently Cl, K, and Zn, were detected. Most cells had two phosphorus-rich granules, which were very similar in elemental composition. In rod-shaped bacteria, these granules were positioned at a specific location in the cell, suggesting a high level of intracellular organization. Polyhydroxyalkanoate granules and sulfur globules were less commonly seen in the cells and had no fixed number or specific location. The presence and composition of these intracellular structures provide clues regarding the physiology of the bacteria that harbor them and the characteristics of the microenvironments where they thrive. [Int Microbiol 2005; 8(2):111-117

    Yeast-derived biosynthesis of silver/silver chloride nanoparticles and their antiproliferative activity against bacteria

    Get PDF
    Here, we provide the first evidence of yeast strains assisted Ag/AgCl-NPs production in vitro. The formed nanoparticles were characterized by spectroscopic and electron microscopy approaches. UV-vis supported the biosynthesis. TEM analysis evidenced that the nanoparticles mainly presented a circular shape and their diameters varied mostly being in the range 2 to 10 nm. XRD analysis showed a crystalline structure, with diffraction peaks corresponding to metallic silver and silver chloride nanoparticles, and when analyzed by high-resolution transmission electron microscopy (HRTEM), instead of being round, (111) (octahedral) and (200) (cubic) symmetry facets appeared systematically in one side of the nanoparticles. Analysis of ultra-thin sections by TEM indicated that the domain of the synthesis of Ag/AgCl-NPs was mainly between the cell wall and the plasma membrane. By using 3D reconstruction obtained from focused ion beam scanning electron microscopy (FIB/SEM) the spatial distribution of the domains of nanoparticle synthesis was mapped and nanoaggregates of Ag/AgCl-NPs up 35 nm in diameter were observed. Extracellular synthesis also occurred; in accordance with the fact that conditioned media from yeast isolates were as efficient at producing Ag/AgCl-NPs as live-cell cultures. Exposure of Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumoniae cultures to Ag/AgCl-NPs led to a strong growth inhibition as shown by optical density measurements. The Ag/AgCl-NPs described here have characteristics compatible with a strong potential for use in the biotechnology industry, particularly for biomedical applications

    Greigite magnetosome membrane ultrastructure in ‘Candidatus Magnetoglobus multicellularis’

    Get PDF
    The ultrastructure of the greigite magnetosome membrane in the multicellular magnetotactic bacteria ‘Candidatus Magnetoglobus multicellularis’ was studied. Each cell contains 80 membrane-enclosed iron-sulfide magnetosomes. Cytochemistry methods showed that the magnetosomes are enveloped by a structure whose staining pattern and dimensions are similar to those of the cytoplasmic membrane, indicating that the magnetosome membrane likely originates from the cytoplasmic membrane. Freeze-fracture showed intramembrane particles in the vesicles surrounding each magnetosome. Observations of cell membrane invaginations, the trilaminar membrane structure of immature magnetosomes, and empty vesicles together suggested that greigite magnetosome formation begins by invagination of the cell membrane, as has been proposed for magnetite magnetosomes

    The influence of brown algae alginates on phenolic compounds capability of ultraviolet radiation absorption in vitro

    Get PDF
    Os compostos fenólicos (PC) de algas pardas são metabólitos secundários que participam de diversos processos biológicos, como proteção contra radiação ultravioleta (UV), bloqueio de poliespermia e ligação de metais. Recentemente, os PC têm sido estudados devido a possíveis interações com polissacarídeos da parede celular. Entretanto, existem poucas evidências sobre estas interações e sua influência em processos fisiológicos. Neste trabalho, foram investigadas as interações entre os PC de Padina gymnospora e os alginatos e a influência destas interações na capacidade de absorção de UV pelos PC. Foram utilizadas técnicas cromatográficas e espectrofotométricas para o isolamento, a caracterização e a determinação da capacidade de absorção de UV dos compostos estudados. Mesmo após a extração dos polissacarídeos de P. gymnospora e a utilização dos métodos de isolamento, os PC permaneceram ligados ao alginato. A interação de alginato com PC não causou modificações no padrão de absorção do espectro eletromagnético (UV-VIS-IR). A capacidade de absorção de UV dos PC ligados aos alginatos foi mantida por um tempo mais longo do que a do extrato de PC puros. Os resultados obtidos demonstram que há uma forte ligação entre PC e alginatos e que estas ligações preservam a capacidade de absorção de UV dos PC ao longo do tempo.Brown algae phenolic compounds (PC) are secondary metabolites that participate in many biological processes, such as ultraviolet radiation (UV) protection, polyspermy blocking and trace metals bounding. Recently, PC has also been studied due to possible interactions with cell wall polysaccharides. However, there are few evidences of these interactions and their influence in physiological processes. The interactions between PC from the brown alga Padina gymnospora and alginates and the influence of these interactions on the UV absorption properties of PC were investigated in this work. Chromatography and spectrophotometry techniques were used to isolate, characterize and determine UV absorption capacity of studied compounds. Even after the P. gymnospora polysaccharide extraction and isolating methods, the PC was maintained linked to the alginate. The interaction of alginates with PC did not cause modifications on absorbance pattern of electromagnetic spectrum (UV-VIS-IR). The UV absorbance capability of PC linked to alginate was maintained for a longer period of time if compared with the purified PC. The obtained results reveal the strong linkage between PC and alginates and that these linkages preserve the UV absorption capability of PC along time

    Ganhos Competitivos em Redes de Cooperação: Estudo em uma Cooperativa

    Get PDF
    Este artigo tem por objetivo identificar a ocorrência dos fatores competitivos indicados por Verschoore & Balestrin (2008) em uma rede de cooperação formada por pequenas farmácias, quais sejam: 1) Maior escala e poder de mercado; 2) Geração de soluções coletivas; 3) Redução de custos e riscos; 4) Acúmulo de capital; 5) Aprendizagem coletiva e, por fim, 6) Inovação colaborativa. Para tanto, foi realizada uma pesquisa descritiva-qualitativa, conduzida sob a forma de estudo de caso. A coleta de dados primários foi feita junto aos gestores das empresas participantes da rede, bem como junto ao seu diretor. Os principais resultados indicam que a rede de cooperação verificada proporciona uma série de benefícios às empresas associadas. No entanto, o atendimento aos fatores competitivos da rede de cooperação analisada parece ficar aquém das características dos fatores indicados por Balestrin & Verschoore (2008), visando a construção de diferenciais competitivos para a rede pesquisada. Os fatores ‘geração de soluções coletivas’ e ‘redução de custos e riscos’ foram indicados como os que obtiveram maior destaque, conforme opinião dos respondentes da pesquisa. Os demais fatores demonstraram baixo impacto na realidade dos entrevistados, pouco contribuindo para a geração de diferenciais competitivos reais à rede de cooperação averiguada

    Synthesis of polylactic acid initiated through biobased antioxidants: Towards intrinsically active food packaging

    Get PDF
    Polylactide (PLA)-based polymers, functionalized with biobased antioxidants, were synthesized, to develop an intrinsically active, biobased and potentially biodegradable material for food packaging applications. To achieve this result, phenolic antioxidants were exploited as initiators in the ring opening polymerization of l-lactide. The molecular weight, thermal properties and in vitro radical scavenging activity of the polymers obtained were compared with the ones of a PLA Natureworks 4043D, commonly used for flexible food packaging applications. The most promising synthesized polymer, bearing vanillyl alcohol as initiator (PLA-VA), was evaluated for active food packaging applications. Packaging with PLA-VA films reduced color and fat oxidation of salami during its shelf life.info:eu-repo/semantics/publishedVersio
    corecore