28 research outputs found

    Antibacterial Properties of D-Amino Acid Oxidase: Impact on the Food Industry

    Get PDF
    Food quality is also related to safety and prevention of spoilage. Biological antimicrobial agents represent suitable alternatives to clinical preservatives in food industry to increase both safety and stability of aliments. Here, we focused on the enzyme D-amino acid oxidase (DAAO) from the yeast Rhodotorula gracilis, a well-studied protein for biotechnological use based on its stability, high activity, and easy recombinant production. DAAO catalyzes the O-2-dependent oxidative deamination of D-enantiomer of amino acids generating alpha -keto acids, ammonia, and hydrogen peroxide. DAAO shows antibacterial activity on both Gram-positive and Gram-negative bacteria in the presence of D-alanine when tested on plates and reduced by half their growth when tested on liquid cultures. Control experiments performed with alternative amino acid-specific flavoenzymes (able or not to generate H2O2 acting on amino acids), a DAAO inactive variant, catalase (H2O2 scavenger), and L-amino acids instead of D-alanine identified H2O2 as the antibacterial agent. DAAO showed a good ability to decrease the bacterial growth on various food stuffs: e.g., 10-fold less colonies were formed on grated cheese incubated for 16 h at 37 degrees C when a tiny amount (0.01 mg corresponding to 1.2 units) of DAAO was added. No exogenous D-amino acids were added since DAAO used the ones naturally occurring or the ones generated during ripening. Notably, simultaneously to H2O2 generation, DAAO also acts as O-2-scavenger thus further hampering food deterioration

    The SHiP experiment at the proposed CERN SPS Beam Dump Facility

    Get PDF
    The Search for Hidden Particles (SHiP) Collaboration has proposed a general-purpose experimental facility operating in beam-dump mode at the CERN SPS accelerator to search for light, feebly interacting particles. In the baseline configuration, the SHiP experiment incorporates two complementary detectors. The upstream detector is designed for recoil signatures of light dark matter (LDM) scattering and for neutrino physics, in particular with tau neutrinos. It consists of a spectrometer magnet housing a layered detector system with high-density LDM/neutrino target plates, emulsion-film technology and electronic high-precision tracking. The total detector target mass amounts to about eight tonnes. The downstream detector system aims at measuring visible decays of feebly interacting particles to both fully reconstructed final states and to partially reconstructed final states with neutrinos, in a nearly background-free environment. The detector consists of a 50 m long decay volume under vacuum followed by a spectrometer and particle identification system with a rectangular acceptance of 5 m in width and 10 m in height. Using the high-intensity beam of 400 GeV protons, the experiment aims at profiting from the 4 x 10(19) protons per year that are currently unexploited at the SPS, over a period of 5-10 years. This allows probing dark photons, dark scalars and pseudo-scalars, and heavy neutral leptons with GeV-scale masses in the direct searches at sensitivities that largely exceed those of existing and projected experiments. The sensitivity to light dark matter through scattering reaches well below the dark matter relic density limits in the range from a few MeV/c(2) up to 100 MeV-scale masses, and it will be possible to study tau neutrino interactions with unprecedented statistics. This paper describes the SHiP experiment baseline setup and the detector systems, together with performance results from prototypes in test beams, as it was prepared for the 2020 Update of the European Strategy for Particle Physics. The expected detector performance from simulation is summarised at the end

    Fast simulation of muons produced at the SHiP experiment using generative adversarial networks

    Get PDF
    This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400 GeV/c SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400 GeV/c proton beams with the SHiP target, an otherwise computationally intensive process. For the simulation requirements of the SHiP experiment, generative networks are capable of approximating the full simulation of the dense fixed target, offering a speed increase by a factor of Script O(106). To evaluate the performance of such an approach, comparisons of the distributions of reconstructed muon momenta in SHiP's spectrometer between samples using the full simulation and samples produced through generative models are presented. The methods discussed in this paper can be generalised and applied to modelling any non-discrete multi-dimensional distribution

    The experimental facility for the Search for Hidden Particles at the CERN SPS

    Get PDF
    The International School for Advanced Studies (SISSA) logo The International School for Advanced Studies (SISSA) logo The following article is OPEN ACCESS The experimental facility for the Search for Hidden Particles at the CERN SPS C. Ahdida44, R. Albanese14,a, A. Alexandrov14, A. Anokhina39, S. Aoki18, G. Arduini44, E. Atkin38, N. Azorskiy29, J.J. Back54, A. Bagulya32Show full author list Published 25 March 2019 ‱ © 2019 CERN Journal of Instrumentation, Volume 14, March 2019 Download Article PDF References Download PDF 543 Total downloads 7 7 total citations on Dimensions. Article has an altmetric score of 1 Turn on MathJax Share this article Share this content via email Share on Facebook Share on Twitter Share on Google+ Share on Mendeley Article information Abstract The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 GeV/c proton beam offers a unique opportunity to explore the Hidden Sector [1–3]. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP Collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived super-weakly interacting particles with masses up to Script O(10) GeV/c2 in an environment of extremely clean background conditions. This paper describes the proposal for the experimental facility together with the most important feasibility studies. The paper focuses on the challenging new ideas behind the beam extraction and beam delivery, the proton beam dump, and the suppression of beam-induced background

    Chapter 5. Glycopeptides: an old but up-to-date successful antibiotic class

    No full text
    Glycopeptides are one of the oldest but still critically important antibiotic class that target Gram-positive pathogens. They are used as essential drugs for the treatment of life-threatening infections of relevant pathogens such as Staphylococcus aureus, Enterococcus spp., and Clostridium difficile. Antibacterial glycopeptides arrest bacterial cell wall biosynthesis by binding to the acyl-d-alanyl-d-alanine terminus of the nascent peptidoglycan, blocking its extracellular polymerization, and subsequently inhibiting cell growth and division. Chemically, these agents consist of a heptapeptide core structure that is transformed in the mature active antibiotic by intramolecular cyclizations among aromatic amino acid residues and by addition of glycosidic moieties, chlorine atoms, and occasionally lipid chains. First-generation glycopeptides (vancomycin and teicoplanin) are natural products from soil actinomycetes. Second-generation molecules (dalbavancin, oritavancin, telavancin) are produced by chemical modification of natural products. Glycopeptide resistance required nearly 30 years to appear following clinical introduction of vancomycin. High-level resistance is due to a collection of genes (named van) that reorder cell wall biosynthesis enabling bacteria to bypass the critical steps susceptible to inhibition by vancomycin and other glycopeptide antibiotics. There have been various efforts, with mixed success, to identify novel glycopeptide structures able to circumvent high-level glycopeptide resistance. This chapter is an overview on the features, mode of action, mechanism of resistance, biosynthesis of this old but up-to-date successful antibiotic class

    D-amino acids in foods

    No full text
    With the only exception of glycine, all amino acids exist in two specular structures which are mirror images of each other, called D-(dextro) and L-(levo) enantiomers. During evolution, L-amino acids were preferred for protein synthesis and main metabolism; however, the D-amino acids (D-AAs) acquired different and specific functions in different organisms (from playing a structural role in the peptidoglycan of the bacterial cell wall to modulating neurotransmission in mammalian brain). With the advent of sophisticated and sensitive analytical techniques, it was established during the past few decades that many foods contain considerable amounts of D-AAs: we consume more than 100\ua0mg of D-AAs every day. D-AAs are present in a variety of foodstuffs, where they fulfill a relevant role in producing differences in taste and flavor and in their antimicrobial and antiaging properties from the corresponding L-enantiomers. In this review, we report on the derivation of D-AAs in foods, mainly originating from the starting materials, fermentation processes, racemization during food processing, or contamination. We then focus on leading-edge methods to identify and quantify D-AAs in foods. Finally, current knowledge concerning the effect of D-AAs on the nutritional state and human health is summarized, highlighting some positive and negative effects. Notwithstanding recent progress in D-AA research, the relationships between presence and nutritional value of D-AAs in foods represent a main scientific issue with interesting economic impact in the near future

    Extraction and Analysis of Peptidoglycan Cell Wall Precursors

    No full text
    Extraction and analysis by LC-MS of peptidoglycan precursors represent a valuable method to study antibiotic mode of action and resistance in bacteria. Here, we describe how to apply this method for: (1) testing the action of different classes of antibiotics inhibiting cell wall biosynthesis in Bacillus megaterium; (2) studying the mechanism of self-resistance in mycelial actinomycetes producing glycopeptide antibiotics
    corecore