498 research outputs found

    Thermal response of jointed rock masses inferred from infrared thermographic surveying (Acuto test-site, Italy)

    Get PDF
    The Mediterranean region is affected by considerable daily and seasonal temperature variations due to intense solar radiation. In mid-seasons, thermal excursions can exceed tens of degrees thus influencing the long-term behaviour of jointed rock masses acting as a preparatory factor for rock slope instabilities. In order to evaluate the thermal response of a densely jointed rock-block, monitoring has been in operation since 2016 by direct and remote sensing techniques in an abandoned quarry in Acuto (central Italy). Monthly InfraRed Thermographic (IRT) surveys were carried out on its exposed faces and along sections of interest across monitored main joints. The results highlight the daily and seasonal cyclical behaviour, constraining amplitudes and rates of heating and cooling phases. The temperature time-series revealed the effect of sun radiation and exposure on thermal response of the rock-block, which mainly depends on the seasonal conditions. The influence of opened joints in the heat propagation is revealed by the differential heating experienced across it, which was verified under 1D and 2D analysis. IRT has proved to be a valid monitoring technique in supporting traditional approaches, for the definition of the surficial temperature distribution on rock masses or stone building materials

    Misura e valutazione dell'esposizione della popolazione ai campi magnetici generati da elettrodotti aerei a doppia terna

    Get PDF
    La valutazione dell\u2019esposizione ai campi magnetici generati da elettrodotti MT in doppia terna a partire da misure di campo effettuate in loco viene qui condotta estrapolando i valori misurati ai valori di corrente di riferimento secondo una metodologia di calcolo innovativa semplice e pratica. La metodologia \ue8 di validit\ue0 generale, potenzialmente applicabile anche a linee a doppia terna AT e AAT

    Calcolo del campo magnetico generato da cavi elicordati per la distribuzione dell'energia elettrica

    Get PDF
    none3ALMA DL–Rapporti di ricerca; versione elettronica disponibile in AMS Acta, il deposito istituzionale per la ricerca dell'Università di Bologna, alla pagina https://amsacta.cib.unibo.it/2614/Questo rapporto interno tratta il campo di induzione magnetica generato da una terna di conduttori avvolti ad elica percorsi da corrente trifase. Le formulazioni esatta ed approssimata di letteratura sono state usate come punto di partenza di un’analisi parametrica di tipo euristico che porta ad una formula innovativa semplificata per il calcolo del campo totale d’induzione magnetica. Tale formula approssimata calcola il campo di induzione magnetica B in funzione della distanza dall’asse dell’elica utilizzando come parametri il passo dell’elica ed il raggio dell’elica.noneE. Kandia; M. Landini; G. MazzantiE. Kandia; M. Landini; G. Mazzant

    Basin scale assessment of landslides geomorphological setting by advanced InSAR analysis

    Get PDF
    An extensive investigation of more than 90 landslides affecting a small river basin in Central Italy was performed by combining field surveys and remote sensing techniques. We thus defined the geomorphological setting of slope instability processes. Basic information, such as landslides mapping and landslides type definition, have been acquired thanks to geomorphological field investigations and multi-temporal aerial photos interpretation, while satellite SAR archive data (acquired by ERS and Envisat from 1992 to 2010) have been analyzed by means of A-DInSAR (Advanced Differential Interferometric Synthetic Aperture Radar) techniques to evaluate landslides past displacements patterns. Multi-temporal assessment of landslides state of activity has been performed basing on geomorphological evidence criteria and past ground displacement measurements obtained by A-DInSAR. This step has been performed by means of an activity matrix derived from information achieved thanks to double orbital geometry. Thanks to this approach we also achieved more detailed knowledge about the landslides kinematics in time and space

    Modulation of STAT3 signaling, cell redox defenses and cell cycle checkpoints by β-caryophyllene in cholangiocarcinoma cells: possible mechanisms accounting for doxorubicin chemosensitization and chemoprevention

    Get PDF
    Cholangiocarcinoma (CCA) is an aggressive group of biliary tract cancers, characterized by late diagnosis, low effective chemotherapies, multidrug resistance, and poor outcomes. In the attempt to identify new therapeutic strategies for CCA, we studied the antiproliferative activity of a combination between doxorubicin and the natural sesquiterpene β-caryophyllene in cholangiocarcinoma Mz-ChA-1 cells and nonmalignant H69 cholangiocytes, under both long-term and metronomic schedules. The modulation of STAT3 signaling, oxidative stress, DNA damage response, cell cycle progression and apoptosis was investigated as possible mechanisms of action. β-caryophyllene was able to synergize the cytotoxicity of low dose doxorubicin in Mz-ChA-1 cells, while producing cytoprotective effects in H69 cholangiocytes, mainly after a long-term exposure of 24 h. The mechanistic analysis highlighted that the sesquiterpene induced a cell cycle arrest in G2/M phase along with the doxorubicin-induced accumulation in S phase, reduced the γH2AX and GSH levels without affecting GSSG. ROS amount was partly lowered by the combination in Mz-ChA-1 cells, while increased in H69 cells. A lowered expression of doxorubicin-induced STAT3 activation was found in the presence of β-caryophyllene in both cancer and normal cholangiocytes. These networking effects resulted in an increased apoptosis rate in Mz-ChA-1 cells, despite a lowering in H69 cholangiocytes. This evidence highlighted a possible role of STAT3 as a final effector of a complex network regulated by β-caryophyllene, which leads to an enhanced doxorubicin-sensitivity of cholangiocarcinoma cells and a lowered chemotherapy toxicity in nonmalignant cholangiocytes, thus strengthening the interest for this natural sesquiterpene as a dual-acting chemosensitizing and chemopreventive agent

    Chiral nanostructuring of multivalent macrocycles in solution and on surfaces

    Get PDF
    We describe the design and synthesis of a novel functionality-rich, homochiral macrocycle, possessing the overall molecular D-2 symmetry, in which multivalency is introduced into the covalent framework by means of four suitably positioned pyridine moieties. The macrocycle synthesis is carried out with functionalized, enantiopure 1,1'-binaphthyl synthons as the source of chirality by means of a room temperature esterification reaction as the cyclization procedure. Upon addition of Pd2+, coordination of the pyridine moieties occurs both intra and intermolecularly, to afford chiral ordered mono and dimeric macrocycles or multimeric aggregates depending on the solvents and conditions used. The metal binding event takes place in combination with a significant macrocyclic conformational rearrangement detected by circular dichroism spectroscopy. When in combination with a third component (C-60), the macrocycle-Pd2+ hybrid undergoes surface-confined nanostructuring into chiral nanofibres

    Molecular recognition of the HPLC Whelk-O1 selector towards the conformational enantiomers of nevirapine and oxcarbazepine

    Get PDF
    The presence of stereogenic elements is a common feature in pharmaceutical compounds, and affording optically pure stereoisomers is a frequent issue in drug design. In this context, the study of the chiral molecular recognition mechanism fundamentally supports the understanding and optimization of chromatographic separations with chiral stationary phases. We investigated, with molecular docking, the interactions between the chiral HPLC selector Whelk-O1 and the stereoisomers of two bioactive compounds, the antiviral Nevirapine and the anticonvulsant Oxcarbazepine, both characterized by two stereolabile conformational enantiomers. The presence of fast-exchange enantiomers and the rate of the interconversion process were studied using low temperature enantioselective HPLC and VT-NMR with Whelk-O1 applied as chiral solvating agent. The values of the energetic barriers of interconversion indicate, for the single enantiomers of both compounds, half-lives sufficiently long enough to allow their separation only at critically sub-ambient temperatures. The chiral selector Whelk-O1 performed as a strongly selective discriminating agent both when applied as a chiral stationary phase (CSP) in HPLC and as CSA in NMR spectroscopy

    Complex geometry and kinematics of subsidiary faults within a carbonate-hosted relay ramp

    Get PDF
    Minor fault geometry and kinematics within relay ramps is strongly related to the stress field perturbations that can be produced when two major fault segments overlap and interact. Here we integrate classical fieldwork and interpretation of a virtual outcrop to investigate the geometry and kinematics of subsidiary faults within a relay ramp along the Tre Monti normal fault in the Central Apennines. Although the Tre Monti fault strikes parallel to the regional extension (NE-SW) it shows predominant dip-slip kinematics, suggesting a NW-SE oriented extension acting at sub-regional scale (1–10 km). Conversely, the slickenlines collected on the front segment of the relay ramp highlight right-lateral kinematics. The subsidiary faults in the relay ramp show a complex geometry (variable attitudes) and slickenlines describe multiple kinematics (left-lateral, dip-slip, right-lateral), independently of their orientation. Our fault slip analysis indicates that a local stress field retrieved from the kinematic inversion of the slickenlines collected on the front segment, and likely promoted by the interaction between the overlapping fault segments that bound the relay zone, can explain most of the geometry and kinematics of the subsidiary faults. Further complexity is added by the temporal interaction with both the regional and sub-regional stress fields

    CXCL12/SDF-1 from perisynaptic Schwann cells promotes regeneration of injured motor axonterminals

    Get PDF
    The neuromuscular junction has retained through evolution the capacity to regenerate after damage, but little is known on the inter-cellular signals involved in its functional recovery from trauma, autoimmune attacks, or neurotoxins. We report here that CXCL12, also abbreviated as stromal-derived factor-1 (SDF-1), is produced specifically by perisynaptic Schwann cells following motor axon terminal degeneration induced by -latrotoxin. CXCL12 acts via binding to the neuronal CXCR4 receptor. A CXCL12-neutralizing antibody or a specific CXCR4 inhibitor strongly delays recovery from motor neuron degeneration invivo. Recombinant CXCL12 invivo accelerates neurotransmission rescue upon damage and very effectively stimulates the axon growth of spinal cord motor neurons invitro. These findings indicate that the CXCL12-CXCR4 axis plays an important role in the regeneration of the neuromuscular junction after motor axon injury. The present results have important implications in the effort to find therapeutics and protocols to improve recovery of function after different forms of motor axon terminal damage
    • …
    corecore