508 research outputs found
ON THE IMPLEMENTATION OF MOMENT TRANSPORT EQUATIONS IN OPENFOAM TO PRESERVE CONSERVATION, BOUNDEDNESS AND REALIZABILITY
Different industrial scale multiphase systems can be successfully described by considering their polydispersity (e.g. particle/droplet/bubble size and velocity distributions) and phase coupling issues are properly overcome only by considering the evolution in space and time of such distributions, dictated by the so-called Generalized Population Balance Equation (GPBE). A computationally efficient approach for solving the GPBE is represented by the quadrature-based moment methods, where the evolution of the entire particle/droplet/bubble population is recovered by tracking some specific moments of the distribution and the quadrature approximation is used to solve the "closure problem" typical of moment-based methods. In this contribution some crucial computational and numerical details concerning the implementation of these methods into the opensource Computational Fluid Dynamics (CFD) code OpenFOAM are discussed. These aspects are in fact very often overlooked, resulting in implementations that do not satisfy the properties of conservation, realizability and boundedness. These constraints have to be satisfied in a consistent way, with respect to what done with the other conserved transported variables (e.g. volume fraction of the disperse phase) also when higher-order discretization schemes are used. These issues are illustrated on examples taken on our work on the simulation of fluid-fluid multiphase system
Formulation and validation of mono- and bi-variate population balance models and their application on soot formation in turbulent flames
The PP&S100 Project: Process Control as an Information System Instance
The Project PP&S100, Problem Posing & Solving, is part of a set of initiatives promoted by the General Directorate of the Italian Ministry of Education, Research and University, for supporting the many innovations that have recently affected curricula at the upper secondary level. Main goals of the project include strengthening computer science culture and enhancing its role as a scientific discipline; founding education processes on logics, mathematics and computer science weaved together to pursue an interdisciplinary scenario, building a culture of "problem posing and solving" by investing across a broad disciplinary group of subjects, ensuring growth of computer science based training of trainers and practicing activities within specific social networks and virtual learning environment to share learning materials, teaching supplies, mentoring and self-evaluation. This work presents a hierarchical conceptual model for "Computational Thinking" assumed by PP&S100, formalized according to the outcomes shown by information systems courses held at the Politecnico di Torino and validated using Process Control as an information system instanc
Mechanisms of endothelial cell dysfunction in cystic fibrosis
Although cystic fibrosis (CF) patients exhibit signs of endothelial perturbation, the functions of the cystic fibrosis
conductance regulator (CFTR) in vascular endothelial cells (EC) are poorly defined. We sought to uncover
biological activities of endothelial CFTR, relevant for vascular homeostasis and inflammation. We examined cells
from human umbilical cords (HUVEC) and pulmonary artery isolated from non-cystic fibrosis (PAEC) and CF
human lungs (CF-PAEC), under static conditions or physiological shear. CFTR activity, clearly detected in
HUVEC and PAEC, was markedly reduced in CF-PAEC. CFTR blockade increased endothelial permeability to
macromolecules and reduced trans‑endothelial electrical resistance (TEER). Consistent with this, CF-PAEC displayed
lower TEER compared to PAEC. Under shear, CFTR blockade reduced VE-cadherin and p120 catenin
membrane expression and triggered the formation of paxillin- and vinculin-enriched membrane blebs that
evolved in shrinking of the cell body and disruption of cell-cell contacts. These changes were accompanied by
enhanced release of microvesicles, which displayed reduced capability to stimulate proliferation in recipient EC.
CFTR blockade also suppressed insulin-induced NO generation by EC, likely by inhibiting eNOS and AKT
phosphorylation, whereas it enhanced IL-8 release. Remarkably, phosphodiesterase inhibitors in combination
with a β2 adrenergic receptor agonist corrected functional and morphological changes triggered by CFTR dysfunction
in EC. Our results uncover regulatory functions of CFTR in EC, suggesting a physiological role of CFTR
in the maintenance EC homeostasis and its involvement in pathogenetic aspects of CF. Moreover, our findings
open avenues for novel pharmacology to control endothelial dysfunction and its consequences in CF
Identification of the zinc finger 216 (ZNF216) in human carcinoma cells. A potential regulator of EGFR activity
Epidermal Growth Factor Receptor (EGFR), a member of the ErbB family of receptor tyrosine kinase (RTK) proteins, is aberrantly expressed or deregulated in tumors and plays pivotal roles in cancer onset and metastatic progression. ZNF216 gene has been identified as one of Immediate Early Genes (IEGs) induced by RTKs. Overexpression of ZNF216 protein sensitizes 293 cell line to TNF-α induced apoptosis. However, ZNF216 overexpression has been reported in medulloblastomas and metastatic nasopharyngeal carcinomas. Thus, the role of this protein is still not clearly understood. In this study, the inverse correlation between EGFR and ZNF216 expression was confirmed in various human cancer cell lines differently expressing EGFR. EGF treatment of NIH3T3 cells overexpressing both EGFR and ZNF216 (NIH3T3-EGFR/ZNF216), induced a long lasting activation of EGFR in the cytosolic fraction and an accumulation of phosphorylated EGFR (pEGFR) more in the nuclear than in the cytosolic fraction compared to NIH3T3-EGFR cells. Moreover, EGF was able to stimulate an increased expression of ZNF216 in the cytosolic compartment and its nuclear translocation in a time-dependent manner in NIH3T3-EGFR/ZNF216. A similar trend was observed in A431 cells endogenously expressing the EGFR and transfected with Znf216. The increased levels of pEGFR and ZNF216 in the nuclear fraction of NIH3T3-EGFR/ZNF216 cells were paralleled by increased levels of phospho-MAPK and phospho-Akt. Surprisingly, EGF treatment of NIH3T3-EGFR/ZNF216 cells induced a significant increase of apoptosis thus indicating that ZNF216 could sensitize cells to EGF-induced apoptosis and suggesting that it may be involved in the regulation and effects of EGFR signaling
Experimental Observation of Surface Charge Inversion in a Biological Nanopore in Presence of Monovalent and Multivalent Cations
Surface CD133 and EpCAM, proliferation and invasiveness in breast derived cell lines. In A, representative cytofluorimetrical evaluation of CD133 and EpCAM surface levels in MCF7 and MDA-MB-468 cells after labelling with a PE-conjugated anti-CD133 antibody or with a FITC-conjugated anti-EpCAM antibody. The staining with isotype matched antibodies (IgG) is used as a control. The expression of each antigen is shown on a biparametric dot plot and the percentage and MFI of positive cells are indicated at the upper right of each panel. In B, MDA-MB-231, MCF7 and MDA-MB-468 cells were subjected to dynamic monitoring of proliferation and invasion through Matrigel using the xCELLigence RTCA system. Cell Index (CI) is reported and error bars indicate ÂąSD. The correspondent Slope analysis, that describes the steepness, incline, gradient, and changing rate of the CI curves over time, is shown on the right. The data were collected from three separate experiments (PDF 364 kb
Graphene oxide affects in vitro fertilization outcome by interacting with sperm membrane in an animal model
We realized the exposure of boar spermatozoa to graphene oxide (GO) at concentration of 0.5, 1, 5, 10 and 50 μg/mL in an in vitro system able to promote the capacitation, i.e. the process that allows sperm cells to became fertile. Interestingly, we found that the highest GO concentration (5, 10 and 50 μg/mL) are toxic for spermatozoa, while the lowest ones (0.5 and 1 μg/mL) seem to significantly increase the sperm cells fertilizing ability (p >.05) in an in vitro fertilization experiment. To explain this finding, we investigated the effect of GO on sperm membrane structure (atomic force microscopy) and function (confocal microscopy and flow cytometry, substrate adhesion). As a result, we found that GO is able to interact with spermatozoa membranes and, in particular, it seems to be able to extract the cholesterol, which is a key player in spermatozoa physiology, from plasma membrane of boar spermatozoa incubated under capacitation conditions. In our opinion, these results are very important because they allow identifying either a plausible mechanism of GO toxicity on spermatozoa and new strategies to manage sperm capacitation
Phospholipase C-beta2 promotes mitosis and migration of human breast cancer-derived cells
Like most human neoplasm, breast cancer has aberrations in signal transduction elements that can lead to increased proliferative potential, apoptosis inhibition, tissue invasion and metastasis. Due to the high heterogeneity of this tumor, currently, no markers are clearly associated with the insurgence of breast cancer, as well as with its progression from in situ lesion to invasive carcinoma. We have recently demonstrated an altered expression of the beta2 isoform of the phosphoinositide-dependent phospholipase C (PLC) in invasive breast tumors with different histopathological features. In primary breast tumor cells, elevated amounts of this protein are closely correlated with a poor prognosis of patients with mammary carcinoma, suggesting that PLC-beta2 may be involved in the development and worsening of the malignant phenotype. Here we demonstrate that PLC-beta2 may improve some malignant characteristics of tumor cells, like motility and invasion capability, but it fails to induce tumorigenesis in non-transformed breast-derived cells. We also report that, compared with the G(0)/G(1) phases of the cell cycle, the cells in S/G(2)/M phases show high PLC-beta2 expressions that reach the greatest levels during the late mitotic stages. In addition, even if unable to modify the proliferation rate and the expression of cell cycle-related enzymes of malignant cells, PLC-beta2 may promote the G(2)/M progression, a critical event in cancer evolution. Since phosphoinositides, substrates of PLC, are involved in regulating cytoskeleton architecture, PLC-beta2 in breast tumor cells may mediate the modification of cell shape that characterizes cell division, motility and invasion. On the basis of these data, PLC-beta2 may constitute a molecular marker of breast tumor cells able to monitor the progression to invasive cancers and a target for novel therapeutic breast cancer strategies
SIMULATION OF A REACTIVE GAS-LIQUID SYSTEM WITH QUADRATURE-BASED MOMENTS METHOD
The description of the interaction between fluid dynamics and fast chemical reactions in gas-liquid systems is complicated by the fact that the gas phase is poly-dispersed, namely it is constituted by bubbles characterized by a distribution of velocity, size and composition values. Phase coupling can be successfully described only if the modeling approach acknowledges the existence of this distribution, whose evolution in space and time is governed by the so-called Generalized Population Balance Equation (GPBE). A computationally efficient approach for solving the GPBE is represented by the Quadrature-Based Moment Methods (QBMM), where the evolution of the entire bubble population is recovered by tracking some specific moments of the distribution. In the present work, one of these methods, the Conditional Quadrature Method of Moments (CQMOM) has been implemented in the OpenFOAM two-fluid solver compressibleTwoPhaseEulerFoam , to simulate a chemically reacting gas-liquid system. To reduce the computational time and increase stability, a second-order operator-splitting technique for the solution of the chemically reacting species was also implemented, allowing to solve the different processes involved with their own time-scale. This modeling approach is here validated by comparing predictions with experiments, for the chemical absorption of CO 2 in NaOH solution, performed in a rectangular bubble column
- …
