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ABSTRACT 

Different industrial scale multiphase systems can be successfully described by 

considering their polydispersity (e.g. particle/droplet/bubble size and velocity 

distributions) and phase coupling issues are properly overcome only by considering the 

evolution in space and time of such distributions, dictated by the so-called Generalized 

Population Balance Equation (GPBE). A computationally efficient approach for solving 

the GPBE is represented by the quadrature-based moment methods, where the evolution 

of the entire particle/droplet/bubble population is recovered by tracking some specific 

moments of the distribution and the quadrature approximation is used to solve the 

“closure problem” typical of moment-based methods. In this contribution some crucial 

computational and numerical details concerning the implementation of these methods into 

the opensource Computational Fluid Dynamics (CFD) code OpenFOAM are discussed. 

These aspects are in fact very often overlooked, resulting in implementations that do not 

satisfy the properties of conservation, realizability and boundedness. These constraints 

have to be satisfied in a consistent way, with respect to what done with the other 

conserved transported variables (e.g. volume fraction of the disperse phase) also when 

higher-order discretization schemes are used. These issues are illustrated on examples 

taken on our work on the simulation of fluid-fluid multiphase systems. 

1. INTRODUCTION 

Turbulent particulate systems, such as fluid-fluid or solid-fluid are very common in the 

process industry. The design and the scale-up of vessels in which similar systems are present 

is currently performed by means of correlations based on experiments, with the important 

limitation that their validity is guaranteed only in specific vessel geometries and operating 

conditions close to those experimented. Moreover the empirical correlations consider only 

volume-averaged properties, neglecting the significant spatial inhomogeneities that 

characterize the behaviour of the industrial scale vessels.  

Nowadays, Computational Fluid Dynamics (CFD) coupled with Population Balance Model 

(PBM) offers the possibility to overcome these issues and properly predict the behaviour of 

large scale equipment, considering that such systems are constituted by distribution of 

bubbles/drops/particles, namely they are polydisperse; the phase coupling issues and the mass 

transfer rates can be successfully described only if the existence of these distributions is 

properly accounted for, by considering a multidimensional Population Balance Equation 
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(PBE) that correctly treats the interactions between continuous fluid phase and the disperse 

particulate phase (e.g., coalescence, breakage, erosion, mass transfer, chemical reactions).  

A very promising approach for solving this equation is represented by the Conditional 

Quadrature Method of Moments (CQMOM) due to its low computational demand. By using 

this method, the evolution in physical space and time of the relevant properties are recovered 

by considering some lower-order moments of the distribution. As pointed out in our previous 

works [1,2], it is essential to adopt proper submodels for describing the physics of such 

particulate systems, namely accurately evaluating the rates of the physical phenomena 

involved. However, another important aspect is represented by the implementation of this 

methodology in CFD codes, since the moments of the polydisperse distribution are conserved 

variables, bounded between physically reasonable values and expression of a possible 

realization of the system. To ensure these properties from the numerical point of view, it is 

appropriate to adopt specific measures in terms of implementation of the moment transport 

equation inside the CFD code, not easily or even impossible to apply in commercial codes. 

For this reason, the open source CFD code OpenFOAM is here used, considering also the 

appeal that nowadays open source frameworks have on both scientific and industrial 

communities.    

This paper is structured as follows. First the governing equations are presented, showing the 

main features of CFD-PBM approach. Then the definition of the desired properties of moment 

conservation, boundedness and realizability are introduced and the numerical methods for 

ensuring them in a CFD code implementation are explained. In the last section, some test 

cases are eventually discussed.   

2. MODEL DESCRIPTION 

Let us consider a bubbly flow, with a continuous liquid phase and a disperse gas phase. The 

bubbles in a turbulent liquid can be thought of as a population evolving chaotically and being 

characterized by different properties, such as size L and chemical composition φb (the so-

called internal coordinates of the population, which are different from the external coordinate, 

namely the space and time). This population can be represented from the mathematical point 

of view by a smooth and differentiable function, the Number Density Function (NDF), 

obtained by ensemble averaging and defined as follows: 

 xx ddd),;,( bb  LtLn , (1) 

namely the expected number of bubbles in the infinitesimal volume dx, around the physical 

point x, with the size of the bubbles in the range between L and L+dL and chemical 

composition between φb and φb + dφb. Of course, the number of internal coordinates could be 

increased in order to consider other properties of the distribution (e.g., bubble velocity, bubble 

temperature); however, in this work, only size and composition are taken into account. Within 

these assumptions, the system considered results in an isothermal gas-liquid dispersion with 

low gas hold-up, where the effects of bubble collision, coalescence and breakage on 

momentum exchange are neglected. Moreover, in this work, only two components are 

considered, nitrogen and oxygen, with only one transferring between phases (i.e., oxygen). 

For this reason, the chemical composition is here considered as a scalar φb, representing the 

number of moles of oxygen within one single bubble. Space and time dependencies will be 

omitted in the following in order to simplify the notation. Eventually it is important to stress 

that although the discussion is here focused on a bubbly gas-liquid flow, the conclusions are 
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more general and can be indeed extended to other fluid-fluid systems, as well as to particle-

fluid systems. 

As explained elsewhere [1-4], the continuity statement of the NDF leads to the Generalized 

Population Balance Equation (GPBE) and the solution of this multidimensional equation can 

be very demanding from the computational point of view. As previously mentioned, this 

aspect plays an important role, especially when the evolution of the NDF in the physical space 

is required. For this reason, the Conditional Quadrature Method of Moments (CQMOM) 

represent an attractive way to solve the GPBE. A generic moment of the NDF can be defined 

in the following way: 

  
 
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LLLnM lk

lk
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where Ωl and Ωφ represent the phase spaces of all the possible values of size and composition 

considered, while the indices k and l represent the order of the moments for each internal 

coordinates. Lower-order moments have important meaning from the engineering point of 

view: in fact, M0,0 represents the total number density of bubbles per unit volume, M1,0 

represents the total bubble length density per unit volume, M0,1 represents the total oxygen 

moles density in the bubbles per unit volume, M2,0 is related to the total specific surface area 

per unit volume through the shape factor kA, whereas M3,0 is related to total volume fraction 

through the volumetric shape factor kV. 

By applying the moment transform to the GPBE, it is possible to write the following 

statement [1]: 
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where G is the rate of continuous change of bubble size, related to molecular process (e.g., 

evaporation, condensation, mass transfer), b  is the rate of continuous change of bubble 

composition (with respect to the different chemical components) related to reactive or mass 

transfer process and uk,l is the velocity of the moment of order k,l, different for each generic 

moment of the NDF. The right hand side term of Eq. (3) models the discontinuous events, 

accounting the instantaneous change of Mk,l due to bubble collision, coalescence and 

breakage. It is important to remark that the Eq. (3) is closed, without assuming a functional 

form of NDF, only in the unrealistic case when uk,l, G, b , as well as coalescence and 

breakage frequencies are independent from the state of the disperse phase. In realistic cases, 

the closure problem is overcome through the assumption of the following functional form for 

the NDF, typical of the CQMOM approach[4]:  
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where the number density wi,j and the composition φi,j are values calculated on the first 

internal coordinate Li with number density wi. The number densities are usually referred as 

weights of quadrature, instead the internal coordinate values are called nodes or abscissas of 

quadrature [2]. By calculating the weights and nodes of quadrature through the so-called 

CQMOM inversion algorithm it is possible to close the Eq. (3), since now we are able to 

evaluate all the integrals appearing on the right hand side of the equation. It is worth 

mentioning that the total number of quadrature nodes is equal to N = N1· N2, where N1 is the 
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number of nodes used to approximate the multivariate NDF with respect to the bubble size 

and N2 is the number of nodes with respect to bubble composition. Each one of the N1 groups 

of bubbles, characterized by size Li is subdivided in N2 group of bubbles characterized by 

composition equal to φb;i,j. It is interesting to notice that a preliminary choice related to the 

order of the internal coordinates has to be made. This decision depends on the problem under 

study: in this particular case, bubble size is selected as first and then bubble composition is 

selected as second. Moreover, N1 is here assumed equal to 2 and N2 equal to 1. For details on 

the CQMOM inversion algorithm see [1,4]. 

2.1 Population Balance Modeling and CFD 

The definition of the different terms appeared in Eq. (3) is needed to solve the GPBE. The 

expressions of Gi and i;b  are formulated by considering only the effect of oxygen mass 

transfer, through a simple mass balance on a single bubble: 
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where Mw is the molecular weight of oxygen, ψc is the concentration of oxygen in the 

continuous phase  and 
2OH is the Henry constant . To estimate the mass transfer coefficient kL, 

the correlation of Lamont and Scott [5], based on local value of the turbulent dissipation rate 

epsilon was used here. Moreover, it is important to remind that as a result of considering N2 = 

1 for CQMOM, it is equivalent to write φb;i,j = φb;i and wi = wi · wi,j. 

From the theory of coalescence and breakage [6] it is possible to define the source term of 

Eq.(3), and for the sake of brevity we report here only the final form: 
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where hi,j is the coalescence kernel, βi is the breakage kernel and Pk,l
(i)

 is the generic moment 

of the daughter distribution function. For the formulation of these terms, readers may refer to 

the literature (for details see [1,7]).  

The calculation of the advection term uk,l of the transport equation for a generic moment Mk,l 

requires the knowledge of the bubble velocity field. This information can be recovered by 

using the Eulerian-Eulerian multi-fluid approach usually implemented in CFD codes, through 

the following governing equations: 
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where i is the tensor accounting for both viscous and turbulent stresses, p is the pressure field 

shared between all the phases, g is the gravity, i and Mi are respectively the mass and 

momentum exchange term between phase i and all the other phases present in the system. It 

can be shown that Eqs. (13) and (14) can be also derived from the GPBE (for details see 

[1,3]). The i index stands for both continuous and disperse phases, and more than two 

different phases can be considered. In gas-liquid modelling, it is common to assume one 
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continuous liquid phase with volume fraction c and velocity uc and N disperse gas phases 

with volume fraction b;i, size Li, chemical composition b;i and velocity ub;i.  In this case, Mi 

is the force per unit volume acting on a group of bubbles with size Li that can be modelled in 

the following way, considering only the drag force: 

  ii
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where ur;i = uc-ub;i is the slip velocity, namely the velocity difference between continuous 

phase and the disperse phase characterized by bubbles with size Li. Moreover, the volume 

fraction of i-th gas phase can be expressed as function of the quadrature approximation as 

follows [8]: 

 
3

V;b iii Lwk . (16) 

As evident in Eqs. (14) and (15), in this work only the drag, gravity and buoyancy forces are 

considered for the sake of simplicity; however other contributions can be easily accounted for 

(i.e., virtual mass or lift). For calculating the drag coefficient CD;i = CD(Li), the approach 

proposed by Petitti et al. [9], based on the terminal bubble velocity in a stagnant liquid with a 

proper correction that consider the effect of other bubbles and the effect of turbulence was 

here adopted. As far as the velocity of a generic moment Mk,l is concerned, it is possible to 

write the following relation: 
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Another common assumption, here adopted, is to consider a unique disperse gas phase, since 

bubbles in a range between 2-10 mm have more or less the same terminal velocity. In this 

case, the gas volume fraction b can be written in function of the moments in the following 

way: 

 0,3Vb Mk , (18) 

while the moment velocity uk,l  is equal to the bubble velocity ub according to Eq. (17).  

3. MOMENT BOUNDEDNESS, REALIZABILITY AND CONSERVATION 

By definition, the gas volume fraction b is a quantity bounded between 0 and 1. As a 

consequence of this fact, also the moment of order three with respect to the bubble size is 

bounded between 0 and a maximum value dictated by Eq. (18). In general, since the moments 

represent physical quantities, the values of all moments are limited between a minimum and a 

maximum value. As we will see in the following, it is possible to ensure the boundedness of 

moments through a specific numerical scheme, derived from the scheme for the volume 

fraction b proposed by Oliveira and Issa [10]. 

In addition to this important property, the moment set transported has to be realizable, namely    

the quadrature weights and abscissas underlying the moment set have to be positioned in 

allowed portion of the phase spaces. When this situation is not verified, we are in front of the 

so-called “moment corruption” problem. A unrealizable moment set leads to wrong or even 

unphysical values for weights and abscissas of the quadrature approximation when the 

CQMOM algorithm is applied, jeopardizing not only the accuracy but also the stability of the 



 6 

simulation. It was demonstrated that a spatial discretization scheme for the moments of order 

higher than the first order upwind may result to unrealizable moment set [11]. However, also 

in this case, it is possible to prevent this unwanted situation by using specific spatial 

discretization schemes for the moments [12]. In this work, we will see how to combine these 

two schemes in order to guarantee moment boundedness and realizability. 

3.1 Numerical scheme to ensure moment boundedness 

The governing equations for the gas volume fraction and for his complement, the liquid 

volume fraction, considering both phases as incompressible, follow from Eq. (13) and can be 

written in the following way: 
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and together with the two conditions b+c=1 and b+c=0, Eqs, (19) guarantee that the total 

mass of the gas-liquid system is properly conserved. By summing the two equations, the 

following expression is obtained: 
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where uvm= bub +cuc is the mean volumetric velocity, and Eq. (20) tells us that its field is 

divergence free if there is no mass transfer. In two-fluid CFD codes, usually only the first 

equation of Eqs (19) is solved and the volume fraction of the continuous phase c is 

calculated as 1 − b; however, if the equation for b is implemented as written in Eqs. (19), 

the boundedness of the gas volume fraction between zero and one may not be ensured from 

the numerical point of view. Starting from the definition of mean volumetric velocity uvm= 

bub +cuc and relative velocity ur= uc -ub, it is possible to write: 

   rbvmrcvmb )1( uuuuu   , (21) 

and by substituting this expression in the first equation of Eqs (19), after some manipulations 

the following equation is obtained [10]: 
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In case of no mass transfer (i.e., b = 0), it is clearly possible to observe that the 

implementation reported in Eq. (22) is capable of preserving the boundedness of the gas 

volume fraction: in fact, the second term is equal to zero according to Eq. (20), the third term 

is an amplitude preserving the wave transport term and the fourth term guarantees that 0 ≤ b 

≤ 1 since it goes to zero at both limits. Otherwise, in case of mass transfer, Eq. (22) can be 

rewritten in order to include Eq. (20) in the following manner: 
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where the advective terms still preserve the boundedness of the volume fraction. 

Since the gas volume fraction b is proportional to the moment of order three with respect to 

bubble size M3,0 according to the Eq. (18), it is evident that a similar idea for preserving 
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boundedness can be applied also to the moment transport equation. By collecting all the 

source term of Eq.(3) in a unique source term Sk,l and assuming that all the moments move in 

the physical space with the same velocity ub, it is possible to write the following transport 

equation for a generic order moment: 

   lklk

lk
SM

t

M
,b,

,










u

x
, (24) 

which has the form of a generic partial differential equation with source term. However, as we 

will see in the following, a similar implementation is not capable of preserving the 

boundedness of the moments; instead, by substituting the bubble velocity ub according to the 

Eq. (21), the following expression similar to Eq. (22) can be written: 
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where the gas volume fraction can be substituted by using the Eq. (18), leading to what 

follows: 
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where the second term is equal to zero in case of no mass transfer. Otherwise, in case of mass 

transfer, it is possible to demonstrate that  b = kV b S3,0 (where S3,0 is the source term of the 

moment of order three with respect to bubble size) and after some algebraic manipulations, 

Eq. (26) becomes: 
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As we will see in the following sections, this implementation is capable of ensuring the 

boundedness of the moments. Moreover, it can be shown that the transport equation of the 

moment M3,0 and the volume fraction b are equivalent from the mathematical point of view 

(the demonstration is not reported here for the sake of brevity). 

3.2 Numerical scheme to ensure moment realizability 

It is useful to remark here that a moment set is valid if there exists an NDF resulting in that 

specific moment set: in this way, the quadrature is realizable, namely the calculated abscissas 

are always in the domain of the phase space and the weights are always positive. Otherwise, 

when the inversion algorithm is used with an invalid moment set, unrealizable quadratures are 

calculated, because no realizable NDF corresponds to an invalid set, ruining the accuracy and 

the stability of the simulation.  

As previously mentioned, the generation of corrupted moment sets may arise when high-order 

spatial discretization schemes are used for transporting the moments of the NDF [11]. This is 

due to the fact that the interpolation scheme for moment values at the face between two 

neighbouring cells may result in a unrealizable moment set, and this corrupted set may 

propagate rapidly in the computational domain, since the interpolation at the cell faces is used 

when the advective term of moment transport equation is calculated by the code. In a recent 

work, an iterative algorithm was proposed to correct a corrupted moment set based on the 



 8 

convexity principle [11], but this algorithm is only capable to restore the set, not to prevent 

and definitely solve the corruption problem. 

Very recently a class of high-order numerical schemes was introduced [12], based on the 

kinetic finite volume schemes, that guarantees the realizability of a set of moments. This class 

of discretization schemes is based on the idea of interpolating at the faces of the cells the 

values of quadrature weights and abscissas instead of the moments themselves: in this way, it 

is possible to build discretization schemes that always prevent the rise of moment corruption 

problem. In particular, it is possible to demonstrate that the moment set is always realizable 

when the abscissas are interpolated by using the first order upwind and the weights are 

interpolated with higher order schemes, providing that the time step used follows some 

specific constraints (for details, see the original work [12]). Moreover, it is also possible to 

prove that it is mathematically equivalent to use the first order upwind for both weights and 

abscissas or to directly interpolate the moment themselves with the first order upwind [CITE]; 

for this reason we always used the first order upwind for the moments equation in our 

previous works, both on commercial and opensource CFD codes [1,3,4]. 

In this work, we coupled the implementation for ensuring boundedness (i.e., Eq. (27)) with 

the interpolation strategy for ensuring realizability of the moment set. This means that, at the 

beginning of every time step, the moment set in every cell of the domain is inverted with the 

CQMOM algorithm in order to find the quadrature weights and abscissas, then the value of 

the moments at the faces of the cells are calculated from the interpolated weights and 

abscissas, the former obtained with an high order method (i.e., second order upwind) and the 

latter with the first order upwind, finally the advective and the source terms of Eq. (27) are 

calculated and the equations for the moments are solved.  

4. TEST CASE, RESULTS AND DISCUSSION 

The geometry considered as a test case is a two-dimensional partially aerated bubble column, 

with the inlet located in the middle of the bottom. The grid is constituted by a limited number 

Figure 1. Instantaneous contour plots of b (left) and M3,0 (right) at t = 2 s for the case in 

which the moment transport equations are implemented by using Eq. (24) 
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of rectangular non-uniform cells (32x70), in order to enhance the effects of numerical 

diffusion. The simulated gas superficial velocity corresponds to 5 mm/s, which is a realistic 

velocity for a bubble column working in the homogeneous regime. All the simulations 

performed are transient with a time step equal to 0.001 s: at the initial time, the interface 

between the gas and liquid is located a two third of the column. For a detailed discussion on 

boundary conditions for such system, see [3]. The standard OpenFOAM solver for Eulerian-

Eulerian incompressible two-fluid systems is modified in order to include the population 

balance model: different solvers are created for considering different implementations of the 

moment transport equations. Details on the models used for bubble coalescence and breakup 

rates can be found in our previous works [1,4]. The following test cases are here carried out: 

firstly the moments are transported by using Eq. (24) without ensuring boundedness with the 

first order upwind as a discretization scheme, then by using Eq. (27) ensuring boundedness 

with the first order upwind as a discretization scheme and finally by using Eq. (27) with 

different discretization schemes for weights and nodes of the quadrature approximation 

(second order upwind for the weights and first order upwind for the nodes). 

In Figure 1, the instantaneous contour plots for the gas volume fraction and the moment of 

order three with respect to bubble size are reported for t = 2 s for the case in which the 

moments are transported by using Eq. (24) without ensuring boundedness with the first order 

upwind. As it is possible to notice, the values of the gas volume fraction are bounded between 

zero and one, since Eq. (23) that guarantees the boundedness of b is used, whereas the values 

reached in some cells of the domain by the moment of order three are higher than  M3,0 = b/ 

kV = 6 / π ~ 1.90986.  It is worth mentioning that the moments of the bubble distribution are 

not defined when the gas becomes the continuous phase above the interface; however, since 

the equations of the moments are solved for all the domain and the realizability of the moment 

sets must be preserved for the stability of the simulation, this situation is not acceptable.  

In Figure 2, the instantaneous contour plots for the gas volume fraction and the moment of 

order three with respect to bubble size are reported for t = 2 s for the case in which the 

Figure 2. Instantaneous contour plots of b (left) and M3,0 (right) at t = 2 s for the case in 

which the moment transport equations are implemented by using the preseriving 

boundedness scheme reported in Eq. (27) 
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moments are transported by using Eq. (27), with the numerical implementation that ensures 

boundedness of the moment values by using the first order upwind as discretization scheme. 

In this case, it is possible to see that the two contour plots are similar as expected: M3,0 is now 

bounded between values corresponding to b= 0 and b= 1. The differences in the two 

contour plots are in this case due to the different discretization schemes used for the volume 

fraction (blended upwind scheme with van Leer slope limiter) and M3,0 (first order upwind); 

in fact the solution of b is less diffusive than M3,0, since a lower order scheme is used for the 

moments on a very coarse grid. Further simulation on a refined mesh showed (results here are 

not reported for the sake of brevity) that the difference between the two fields significantly 

reduces.  

In Figure 3, the comparison between the first order upwind and a realizable high order  

discretization schemes in terms of moment of order three with respect to bubble size is 

reported for t = 100 s. It is clear that the numerical diffusion plays an important role in this 

test case: the solution obtained with the first order upwind is more diffusive than the 

realizable high order discretization scheme. For this case, the contour plot of M3,0 is very 

similar to the profile of gas volume fraction for which it is valid the proportionality 

relationship, since the equation of  b is solved by means of a high order scheme (blended 

upwind scheme with van Leer slope limiter).  

5. CONCLUSIONS 

In this work, the problem of moment conservation, boundedness and realizability is 

considered. These aspects are closely connected to often overlooked numerical details 

concerning the implementation of Method of Moments into the Computational Fluid 

Dynamics (CFD) codes. Since these constraints have to be satisfied in a consistent way, a new 

numerical approach is proposed, based on what usually is done with the other conserved 

Figure 3. Instantaneous contour plots of b (left) and M3,0 at t = 100 s for the case in which 

the moment transport equations are implemented by using the preserving 

boundedness scheme reported in Eq. (27). The centre figure is obtain when first 

order upwind is used, instead at right the realizable high order discretization scheme 

for the moment equations. Only the domain under the liquid level is visualized. 
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transported variables, as the volume fraction of the disperse phase. This methodology can be 

also adapted for use with realizable higher-order discretization schemes. A simplified 

geometry was used as the test case for three different numerical implementations of the 

moment transport equation, which were solved with the open source CFD code OpenFOAM. 

The analysis of the results shows that the proposed numerical approach is capable of 

preserving the boundedness and the realizability of the moment set and the stability of the 

code is assured. When a realizable higher order discretization scheme is used for the 

moments, the numerical diffusion of the solution is significantly reduced, allowing to use a 

coarser grid and therefore decreasing the computational costs.   
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