22 research outputs found

    Assessment of technological options and economical feasibility for cyanophycin biopolymer and high-value amino acid production

    Get PDF
    Major transitions can be expected within the next few decades aiming at the reduction of pollution and global warming and at energy saving measures. For these purposes, new sustainable biorefinery concepts will be needed that will replace the traditional mineral oil-based synthesis of specialty and bulk chemicals. An important group of these chemicals are those that comprise N-functionalities. Many plant components contained in biomass rest or waste stream fractions contain these N-functionalities in proteins and free amino acids that can be used as starting materials for the synthesis of biopolymers and chemicals. This paper describes the economic and technological feasibility for cyanophycin production by fermentation of the potato waste stream Protamylasse™ or directly in plants and its subsequent conversion to a number of N-containing bulk chemicals

    Improved emulsion stability by succinylation of patatin is caused by partial unfolding rather than charge effects

    Full text link
    This study investigates the influence of succinylation on the molecular properties (i.e. charge, structure and hydrophobicity) and the flocculation behavior of patatin-stabilized oil-in-water emulsions. Patatin was succinylated to five degrees (0% (R0) to 57% (R2.5)). Succinylation not only resulted in a change of the protein charge but also in (partial) unfolding of the secondary structure, and consequently in an increased initial adsorption rate of the protein to the oil–water interface. The stability against salt-induced flocculation showed two distinct regimes, instead of a gradual shift in stability as expected by the DLVO theory. While flocculation was observed at ionic strengths > 30 mM for the emulsions stabilized by the variants with the lowest degrees of modification (R0–R1), the other variants (R1.5–R2.5) were stable against flocculation ¿ 200 mM. This was related to the increased initial adsorption rate, and the consequent transition from a protein-poor to a protein-rich regime. This was confirmed by the addition of excess protein to the emulsions stabilized by R0–R1 which resulted in stability against salt-induced flocculation. Therefore, succinylation of patatin indirectly results in stability against salt-induced flocculation, by increasing the initial adsorption rate of the protein to the oil–water interface, leading to a shift to the protein-rich regime

    Towards predicting the stability of protein-stabilized emulsions

    Full text link
    The protein concentration is known to determine the stability against coalescence during formation of emulsions. Recently, it was observed that the protein concentration also influences the stability of formed emulsions against flocculation as a result of changes in the ionic strength. In both cases, the stability was postulated to be the result of a complete (i.e. saturated) coverage of the interface. By combining the current views on emulsion stability against coalescence and flocculation with new experimental data, an empiric model is established to predict emulsion stability based on protein molecular properties such as exposed hydrophobicity and charge. It was shown that besides protein concentration, the adsorbed layer (i.e. maximum adsorbed amount and interfacial area) dominates emulsion stability against coalescence and flocculation. Surprisingly, the emulsion stability was also affected by the adsorption rate. From these observations, it was concluded that a completely covered interface indeed ensures the stability of an emulsion against coalescence and flocculation. The contribution of adsorption rate and adsorbed amount on the stability of emulsions was combined in a surface coverage model. For this model, the adsorbed amount was predicted from the protein radius, surface charge and ionic strength. Moreover, the adsorption rate, which depends on the protein charge and exposed hydrophobicity, was approximated by the relative exposed hydrophobicity (QH). The model in the current state already showed good correspondence with the experimental data, and was furthermore shown to be applicable to describe data obtained from literature

    Hydrogen Peroxide Metabolism in Yeasts

    Full text link
    A catalase-negative mutant of the yeast Hansenula polymorpha consumed methanol in the presence of glucose when the organism was grown in carbon-limited chemostat cultures. The organism was apparently able to decompose the H 2 O 2 generated in the oxidation of methanol by alcohol oxidase. Not only H 2 O 2 generated intracellularly but also H 2 O 2 added extracellularly was effectively destroyed by the catalase-negative mutant. From the rate of H 2 O 2 consumption during growth in chemostat cultures on mixtures of glucose and H 2 O 2 , it appeared that the mutant was capable of decomposing H 2 O 2 at a rate as high as 8 mmol · g of cells −1 · h −1 . Glutathione peroxidase (EC 1.11.1.9) was absent under all growth conditions. However, cytochrome c peroxidase (CCP; EC 1.11.1.5) increased to very high levels in cells which decomposed H 2 O 2 . When wild-type H. polymorpha was grown on mixtures of glucose and methanol, the CCP level was independent of the rate of methanol utilization, whereas the level of catalase increased with increasing amounts of methanol in the substrate feed. Also, the wild type decomposed H 2 O 2 at a high rate when cells were grown on mixtures of glucose and H 2 O 2 . In this case, an increase of both CCP and catalase was observed. When Saccharomyces cerevisiae was grown on mixtures of glucose and H 2 O 2 , the level of catalase remained low, but CCP increased with increasing rates of H 2 O 2 utilization. From these observations and an analysis of cell yields under the various conditions, two conclusions can be drawn. (i) CCP is a key enzyme of H 2 O 2 detoxification in yeasts. (ii) Catalase can effectively compete with mitochondrial CCP for hydrogen peroxide only if hydrogen peroxide is generated at the site where catalase is located, namely in the peroxisomes. </jats:p
    corecore