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Abstract The potato lipase, patatin, has long been thought of as essentially inactive towards
triacylglycerols. Recently, technology has been developed to isolate potato proteins in native
form as food ingredients at industrial scale. Characterisation of native patatin obtained in this
way revealed that this enzyme activity towards triacylglycerols has been underestimated. This
enables the application of patatin in cheese ripening, which is described in this study. When
patatin is added to milk during cheese making, the lipase preferentially releases short-chain
fatty acids that contribute to cheese flavour in a dose-dependent manner. Fortuitously, the
lipase activity is found mainly in the curd. The release of the short-chain fatty acids matches
the activity profile of patatin towards homotriacylglycerols of defined chain length. Residual
patatin in the whey fraction can be inactivated effectively by heat treatment that follows
Arrhenius kinetics. The results are discussed in terms of cheese making, patatin substrate
preference and implications for the use of patatin more generally in food emulsions.
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Introduction

The flavour of mature cheese is the result of a series of complex biochemical events, mainly
produced by enzymes that occur in the curd during ripening. Among them, lipolysis of milk fat
is carried out by lipolytic enzymes, which are hydrolases that cleave the ester linkage between
a fatty acid and the glycerol core of the triacylglyceride, producing free fatty acids (FFA), and
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mono- and diacylglycerides. The principal sources of lipolytic agents in cheese are lipoprotein
lipase of milk, lipases from acid lactic bacteria and non-starter acid lactic bacteria (NSLAB),
moulds and yeasts, lipases from rennet paste and exogenous lipase [1, 2]

The use of exogenous lipases in dairy industry is growing not only as cheese flavour
enhancer but also as an alternative to accelerate cheese ripening, a slow and relatively
expensive process. Several preparations of lipases and esterases are commercially available,
which are derived from moulds (Aspergillus sp., Rhizomucor miehei, Pseudomonas
fluorescens, Penicillium sp.), from yeasts (Candida rugosa) and from the abomase of small
ruminants. Lamb rennet paste containing pregastric esterase is used in the production of some
PDO traditional sheep milk cheeses, such as Idiazabal and Roncal in Spain, Fiore Sardo,
Pecorino Romano and Canestrato Pugliese in Italy and Feta in Greece [3–5].

Selecting an appropriate lipase and applying it in a specific food system can be difficult,
since commercial lipases vary in activity over a range of six orders of magnitude. These
preparations are often complex mixtures of materials that originate from the host organism.
The presence of non-lipase enzymes can introduce undesired catalytic activity, while non-
proteinaceous material can interfere with the control of water activity and with mass transfer
processes [6]. Furthermore, addition of lipases in milk can pose an economic disadvantage
when only a small fraction is retained in the curd [7, 8].

The potato tuber contains substantial amounts of protein. Large-scale production of such
protein has been investigated by many authors using a variety of techniques [9]. One of the
most convenient methods that have been identified thus far is the isolation of the major tuber
storage protein patatin via chromatography [10].

Patatin is a glycoprotein that migrated to 45 kDa on SDS-PAGE gels and that exists in
different isoforms that are immunologically identical [11]. It is ubiquitous among different
potato cultivars and generally forms between 20 and 50 % of the potato tuber’s soluble
proteome. While its physiological role is that of a storage protein, patatin shows hydrolase
activity towards a broad range of substrate such as glycol- and phospholipids and their
corresponding lyso-species, monoacylglycerols and methyl- and ethyl esters of fatty acids.

When hydrolyzing lipids, patatin shows a preference for the sn-1 position [12]. On
paranitrophenyl substrates, patatin shows highest activity towards acyl chains of 8, 10, 12, or
16 carbon atoms [13]. Most authors agree that patatin has no activity towards triacylglyerols.
Only recently, studies have suggested that this activity has been underestimated [14].

Currently, different native potato protein fractions are commercially available, e.g. food
structuring based on the proteins functional properties [15], as well as for the fining of wine
[16]. Surprisingly, patatin is recovered in a single fraction of high purity from potato juice by
industrial chromatography commercially.

Some research was conducted on the practical use of patatin as a lipase for the synthesis of
monoacylglycerols [17], but no commercial preparations would become available until the late
2000s. Since currently patatin is available in the native state at food grade purity, it is
worthwhile to investigate its use in food processes such as cheese making.

Since the literature suggests a preference for specific fatty acids, namely capric and lauric
acid, patatin is expected to preferentially release these fatty acids from cheese fat triglycerides
[18, 13]. Specific fatty acids have distinct flavours that range from sharp/pungent for short-
chain fatty acids to soapy/rancid/waxy or even bitter for the longer chain fatty acids [19]. A
specific release of certain fatty acids can therefore confer a unique flavour profile to a cheese.
In addition, these fatty acids can undergo subsequent conversion into other flavour compo-
nents such as aldehydes, ketones and esters.

232 Appl Biochem Biotechnol (2015) 176:231–243



To evaluate the effect of patatin on cheese fat during ripening, Gouda-type cheeses were
manufactured and analysed by chemical instrumentation and a trained test panel. Additional
biochemical tests were performed to gain insight into the effect of patatin during cheese
making.

For commercial application, cheese lipases should have minimal influence on the flavour
and appearance of the resulting whey fraction. Hence, the distribution of patatin over the whey
and curd fractions, and the effect of pasteurisation of the whey on residual lipase activity were
determined.

Experimentals

Isolation of Patatin from Potato Tubers

Patatin was produced on the industrial scale according to the method in Giuseppin et al. [20].
Potato fruit juice from the AVEBE factory at Gasselternijveen, The Netherlands, was adjusted
to pH 4.8. Five bed volumes were loaded onto an expanding bed adsorption column loaded
with 40 cm of a custom agarose resin cross-linked with epichlorohydrin and supported on
tungsten carbide beads that was modified with a mercaptobenzoic ligand (Upfront Chroma-
tography, Denmark) at a flowrate of 5 cm/min. The column was washed with 1 bed volume of
30 mM citrate buffer at pH 4.8 and eluted with 5 bed volumes of 30 mM citrate at pH 6.0. The
eluate was adjusted to a pH of 6.3 and concentrated to 10 % (w/v) protein on 30 kDa MWCO
ultrafiltration membranes. Protein content was determined using a Sprint Rapid Protein
Analyser (CEM) that was calibrated against Kjeldahl nitrogen using a conversion
factor of 6.25. The resulting material was dried on a spray drying tower operating
on at a temperature of 200 °C, resulting in an off-white powder. This material is sold
commercially under the brandname BSolanic^. Lipase activity was determined accord-
ing to the lipase activity method in the Food Chemicals Codex [21]. Briefly, this
method uses a pH-stat setup to determine the amount of sodium hydroxide that is
required to maintain the pH of an emulsion of tributyrin in gum Arabic in the presence of a
lipase.

Determination of Hydrolytic Activity of Patatin Towards Defined Substrates

Triacetin, tributyrin, tricaproin, tricaprylin and trilaurin were purchased as a standard
kit from Sigma Aldrich (Tri11-1kt); 100 mM Stock emulsions of the substrates were
prepared in reaction buffer. Tricaprin and trimyristin failed to yield stable emulsions
and were omitted from the study. Substrates were added for a final concentration of
1 mM to 0.5 % (w/v) Gum Arabic (Sigma Aldrich) containing 100 mM Triton X100,
50 mM NaCl, 10 mM CaCl2 and 5 mM Tris(hydroxymethyl)aminomethane at pH
7.8.

Saturated phophatidylcholines of chain lengths of 6, 7, 8, 9 and 12 carbon atoms were
purchased from Avanti Polar Lipids Inc. and hydrated in reaction buffer.

Patatin was added in quantities sufficient to induce a linear and consistent
consumption of sodium hydroxide solution to maintain the pH. This consumption
was measured over time and expressed as micromoles per minute per gramme of
patatin.
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Distribution of Patatin Over Curd and Whey Via Lipase Activity Measurement

Lipase substrates were purchased from Sigma Aldrich (4-nitrophenylcaprylate, 21742); 5-mL
aliquots of milk were supplemented with doses of patatin of 150, 250, 350, and 500 mg/L from
a 100-g/L patatin solution. Total volume was kept constant between the different samples by
the addition of demi-water. The resulting mixtures as well as untreated milk were coagulated
by the addition of rennet (Sigma Aldrich R5876) at 10 mg/L and incubating for 90 min at
35 °C. The resulting material was separated into curd and whey by centrifugation at 9000×g
for 10 min. The whey was then transferred into microvials and centrifuged again at 15,000×g
for 10 min to obtain a slightly opaque solution. The curd fractions were resuspended in
100 mM citrate buffer at pH 7.5; 100 μL of these solutions were mixed with 100 μL of
30 mM Tris-HCl at pH 8.0 solution containing 2 mM of 4-nitrophenylcaprylate in a 96-well
plate. The increase in absorbance at 405 nm was recorded at 10-s intervals for 5 min at ambient
temperature using a BioRad Model 680 plate reader. For each sample, three data points were
used. Since the presence of fat micelles strongly influenced the activity of patatin towards the
lipophilic substrate, the activity of patatin in whey was compared with the activity of patatin in
aqueous buffer and the activity of patatin in milk was compared with that activity in
resuspended curd.

Thermal Inactivation of Patatin

Patatin (Solanic 2x6P) was dissolved to a concentration of 1 g/L in buffer solutions of pH 5.0,
6.0 and 7.0 and in freshly prepared whey of pH 6.7. Kinetic degradation models of the lipase
activity in these solutions were constructed by measuring residual activity upon thermal
exposure in a stopped-flow system.

Whey was prepared by adding to whole milk 10 mg/L rennet at 30 °C for 90 min and
removing the curd by filtration through cheese cloth. Patatin solutions were treated at
temperatures between 50 and 80 °C at exposure times ranging between 4 ms up to 10 s.
Lipase activity was determined by measuring the increase in absorbance at 340 nm of the
patatin solution acting on 4-methylumbeliferyl acetate (Alfa Aesar A12147) in 30 mM
phosphate buffer of pH 8.0 for 3 min [22]. The data were fitted according to Arrhenius
kinetics according to the method of Anton and Barrett [23].

Addition of Patatin to Model Cheeses

Model cheeses with patatin were manufactured and analysed at NIZO Food Research (Ede,
The Netherlands) using the processing protocol for Gouda-type cheese in the Screencheese
system which is described in detail in Bachmann et al. [24]. One vat of curd (200 L) was
prepared as in usual cheese making, using thermised bactofugated standardised and
pasteurised cheese milk. Rennet (Kalase, 150 IMCU, CSK Food Enrichment, Leeuwarden,
The Netherlands) was added at a concentration of 230 μL/L milk and calcium chloride
(33 wt.%) was added at 400 μL/L milk. Starter culture (Bos mesophilic starter, CSK Food
Enrichment, Leeuwarden, The Netherlands) was pregrown for 20 h at 20 °C and added to the
vat. This mixture was incubated for 45 min at 30.5 °C. The resulting curd was cut and washed
at 30.5 °C by alternatingly cutting and stirring for 20 s and resting for 3 min, over a period of
20 min. The curd was then washed with water at 35.5 °C for 45 min. After washing the curd, it
was divided into ten portions with different doses of patatin (Solanic 2x6P) in a 10 wt.%
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solution in milk mixed thoroughly through. These doses were 0.1, 0.5, 1, 3, 5, 10, 15, and
30 mg patatin/L cheese milk. Two portions were kept as untreated controls. The curds were
pre-pressed, divided into four equal parts and each placed in a cheese vat to form an individual
cheese. The resulting 40 cheeses (∼350 g each) were pressed, brined, vacuum-packed and
ripened at 13 °C for 6 or 13 weeks.

Volatile Compounds Analysis

Volatile flavour components were determined and quantified under the Screencheese proce-
dure at NIZO Food Research (Ede, The Netherlands). This method consisted of solid-phase
dynamic extraction of the headspace at 60 °C. The volatiles were then injected by a Combi Pal
Autosampler directly into an Ultrafast GC-MS equipped with a UFM RTX 200, 10 m×
0.14 mm GC column that underwent a temperature gradient from 20 to 250 °C (Thermo
Fisher Scientific). MS spectra were recorded over an m/z ratio of 35–350 by a Thermo Plus
TOF MS (Thermo Fisher Scientific), operating in single-ion recording mode.

Free Fatty Acid Analysis

Levels of individual fatty acids were determined in duplicate using GC-based methods as part
of the Screencheese system at NIZO Food Research (Ede, The Netherlands) using the
procedure of de Jong and Badings [25]. Briefly, to 1 g cheese samples, 3 g of Na2SO4,
0.3 mL of H2SO4 and internal standards are added, followed by three extractions in 3 mL of
1:1 ether/heptanes. Neutral lipids are separated from the FFAs by passing the pooled extracts
over a 1-g deactived alumina column and eluting the neutral lipids with 10 mL 1:1 ether/
heptanes. The FFA are then recovered by washing the alumina twice with 2.5 mL diethylether
containing 3 vol.% formic acid; 0.5 μL of this extract is introduced directly into a Carlo Erba
Model Mega 5160 GC (Carlo Erba, Milan, Italy) equipped with a fused silica capillary column
and a flame ionisation detector. Samples were injected at 65 °C; during the run, the temper-
ature was raised to 240 °C at 10 °C/min. Typically, the coefficient of variance for this analysis
is less than 2 %.

Sensory Analysis

Sensory analysis was carried out by a trained expert panel (n=12) at NIZO Food Research
(Ede, The Netherlands) that was trained and selected via an ISO 8586 procedure. The testers
represent the 10 % best skilled individuals in smelling and tasting of the normal population and
are regularly trained on dairy products and the Common Flavour Language (CFL). Cheeses
were tested blind and in random order. The panel evaluated the attributes sweet, bitter, metallic,
scorched, soapy/sweaty, farm-like and creamy.

Results and Discussion

Patatin Isolation

The patatin preparation obtained that was used in this research consisted mainly of protein
(Table 1). Lipase activity was approximately 500 LU/g. This activity is on the low end of the
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scale among commercial lipase preparations [6]. In contrast, the purity in terms of protein
content is among the highest.

Introduction of Patatin into Cheese

In cheese making, lipases can be introduced either in the milk fraction or directly into the curd
prior to pressing. Patatin that is dissolved in milk fractionates mainly with the curd in
enzymatic coagulation, as is common for lipases due to their affinity for fatty substrates.
Approximately 30 % of the amount of patatin that is introduced remains in the whey fraction
(Table 2).

Effect of Patatin on Defined Lipids

A series of experiments on defined substrates revealed that patatins activity towards
triacylglycerides matches its preference for cheese fatty acids (Figs. 1 vs. 2). Interestingly,
the preference of patatin towards homodiacyl-glycerophosphocholines (Fig. 3) is different
from both the literature values obtained on paranitrophenyl esters and triacylglycerols alike
[18, 13]. The hydrolytic activity of patatin towards phosphatidylcholine substrates is vastly
higher than towards triacylglycerides, and the enzyme shows increased activity towards
substrates of increasing chain length. However, when substrate chain length reaches a value
of 12, activity is abolished.

This lack of activity may be explained by the observations that posphatidylcholines of chain
lengths of 12 and above tend to form stable bilayer structure in aqueous solution, while lower
chain lengths form either leaky vesicles or micelles [26]. Lysophosphatidylcholines of any
chain length also form micelles due to their conical molecular shape. From previous studies, it
is known that patatin shows high activity towards lysophosphatidylcholines [13].

Overall, these results indicate that patatin is not selective for specific acyl chain lengths per
se, but rather prefers to hydrolyze substrates that occur in a soluble or micellar form in aqueous
solution. This behaviour may result from patatins lack of a hydrophobic lid [27]. This structure
is commonly thought to mediate the association of lipases with hydrophobic surfaces and
occurs in the vast majority of lipases that have been analysed to date.

Table 1 Composition of patatin
preparation Moisture Protein Activity

4–8 % 90 % 500 U/g

Table 2 Distribution of patatin activity over the curd and whey fraction

Patatin
concentration (g/L)

Added
activitya

Activity
in wheyb

% of activity
recovered in whey

Activity
in milkb

Activity
in curdb

% of activity
recovered in curd

0.15 53 18.8±0.2 35 20±1.1 16.5±1.2 83

0.25 89 27.9±0.2 31 22±3 16.8±0.8 76

0.35 125 42.5±0.3 34 30±2 20.7±1 68

0.50 178 62.2±1.1 35 35±2 24.8±1.2 71

a Calculated from enzyme in buffer
b mOD405/min
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This mechanism has implications for the application of patatin in cheese. Because patatin
will only hydrolyse the most soluble, least hydrophobic triglycerides, the small, most pungent
fatty acids will be exclusively released while the soapy larger fatty acids will remain in the
triacylglycerides. Because the fraction of susceptible triglycerides will be small, the addition of
patatin to cheese will only release a modest amount of free fatty acids. Thus, excessive
lipolysis and rancidity could be avoided.

Effect of Patatin on Cheese Lipids

The patatin-containing curds show increased levels of lipolysis compared with a control curd.
Lipolysis increases in a dose-dependent manner with the amount of patatin that is introduced

Fig. 1 Activity of patatin towards triacylglycerides of defined acyl chain length determined via pH-stat

Fig. 2 Selectivity of patatin towards different fatty acid species in Gouda-type cheese
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(Fig. 4). At a patatin dose of 1 mg/L milk, the free fatty acid content becomes statistically
different from the controls. Surprisingly, the selectivity of patatin towards cheese fatty acids is
different than would be expected based on the reported literature information. Instead of the
expected preferential release of capric and lauric acid [13], the highest increase in fatty acids
was observed for butyric, caproic and caprylic acid (Fig. 2).

Effect of Patatin on Cheese Volatiles

In addition to free fatty acids, a variety of derived products such as esters and methylketones
were detected. The increase in esters could result from the direct action of patatin as a catalyst
for ester synthesis. However, the increase could also result from non-patatin hydrolases that
work on the released fatty acids. Fatty aldehydes did not increase in an appreciable manner
upon the addition of patatin to cheese (Fig. 5).

Fig. 3 Activity of patatin towards diacylphosphocholines of defined acyl chain length determined via pH-stat

Fig. 4 Effect of different doses of patatin on the release of free fatty acids in Gouda-type cheese after 6 and
13 weeks of ripening
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Effect of Patatin on Cheese Sensory Attributes

Several taste attributes were found to differ between the patatin cheeses and reference
cheese: Bitter, sweet, scorched and soapy/sweaty. Of these attributes, only the soapy/
sweaty flavour aspect varied in a consistent dose-dependent manner (Fig. 6). At a
patatin dose of 0.5 mg/L milk, the test panel reported statistical difference with the
reference cheeses. The increase in flavour is consistent with the increase in butyric,
capric and caproic acid in the free fatty acid analysis. These flavours are most
commonly associated with mould- and smear-ripened cheeses, blue cheese and hard-
type Italian cheeses [19] like Romano, Pecorino, Provalone, Parmesan as well as Feta
and Mozzarella.

Fig. 5 Increase in volatile components of cheese containing patatin after 13 weeks of ripening: Top, esters.
Centre, ketones. Bottom, aldehydes. Patatin doses are expressed as milligrammes patatin per litre of milk
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While the levels of several volatile components increased in a dose-dependent manner with
patatin, the typical flavours of these products were not reported by the test panel, the more
pungent FFAs apparently dominate the flavour profile.

Inactivation of Residual Patatin in Whey

Approximately 30 % of the patatin that is added to milk remains in the whey fraction, from
which whey protein is recovered. The presence of enzymatically active material in this fraction
could be highly undesirable. While the unfolding of patatin as a function of temperature has
been reported previously as determined by far-UV circular dichroism [28] and differential
scanning calorimetry [14], these data provide no insight into the kinetics of enzyme inactiva-
tion and therefore do not allow the effect of pasteurising conditions to be assessed accurately.

To establish the required conditions for the inactivation of patatin, solutions of this enzyme
were heat-treated in a stopped-flow system. This allowed for the treatment of patatin at defined
temperatures and time intervals. Aliquots were analysed for residual lipase activity, and the
inactivation characteristics were plotted essentially according to Anthon and Barrett (Fig. 7).
Inactivation kinetics were recorded for patatin in buffer solutions of varying pH values and in
whey solution. Typically, cheese whey undergoes a pasteurisation step at 74 °C. This temper-
ature will substantially inactivate patatin in a matter of seconds (Table 3).

Conclusions

The potato lipase patatin hydrolyses triacylglycerides that contain short-chain fatty acids in
both model studies and in the context of ripening cheese. In cheese, fatty acids are released by
patatin in a dose-dependent manner that causes a corresponding increase in the relevant flavour
attributes. In addition, the presence of patatin in cheese results in an increase in esters and
ketones but not in aldehydes. However, the typical flavours that are associated with these

Fig. 6 Increase in the soapy/sweaty flavour attribute of cheese containing patatin after 6 and 13 weeks of
ripening
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compounds were not detected by sensory analysis. Patatin fractionates mainly into the curd
fraction in cheese making.

Patatin undergoes effective thermal inactivation at moderate temperatures according to
Arrhenius kinetics in both aqueous buffers and in whey protein solution. This allows the use
of patatin in cheese making for the development of cheese flavour without adverse effects on
the whey protein fraction.

The use of an effective inactivation of the lipase by pasteurisation and the low levels of side
reactions make potato lipase very suitable for controlled flavour formation derived from short-
chain fatty acids in cheeses and other fermented products [29].

Table 3 Thermal inactivation parameters for patatin under different conditions

Inactivation conditions Activation energy (kJ/mol) Reference temperature (K) reference reaction rate

30 mM phosphate pH 5 258±15 333 0.53

30 mM phosphate pH 6 268±14 333 0.57

30 mM phosphate pH 7 248±10 333 0.56

Whey 205±20 333 0.32

Fig. 7 Thermal inactivation of patatin. Residual activity after heat treatment (top) and Arrhenius plot for the
same (bottom)
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Next to cheeses, studies on model substrates reveal that patatin prefers to hydrolyse water-
soluble compounds or compounds that are capable of forming micelles rather than continuous
membranes or oil droplets. Hence, no lipolysis catalysed by patatin is expected for the majority
of food fats and oils. This will enable lipase applications in emulsified food systems.

Previously, van Koningsveld and coworkers have proposed the use of patatin as an effective
emulsifying agent in the preparation of food emulsions but raised concerns about residual
lipase activity [14]. In the present study, no hydrolysis on long-chain triacylglycerides was
observed. Since the vast majority of food fats and oils do not contain short-chain
triacylglycerides (milk fat and to a lesser degree coconut oil being the exceptions), such
hydrolysis is not expected to occur in food systems where native potato protein comes into
contact with food fats and oils. This is in agreement with studies on the use of potato protein
for the emulsification of soy oil [30] and corn oil [31]. While these authors did not specifically
investigate lipolysis by potato protein, the nature of their experiments is such that it would
have been revealed if it had occurred to an appreciable extent. However, the addition of
susceptible triacylglycerides to such emulsions could result in the formation of free fatty acids
in situ should such a system be desired to, for example, generate cheese-like flavour in
emulsions.
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